Maciej T. Grzesiak
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maciej T. Grzesiak.
Acta Physiologiae Plantarum | 2007
Tomasz Hura; Katarzyna Hura; Maciej T. Grzesiak; Andrzej Rzepka
A field study was performed on triticale, field bean, maize and amaranth, to find differences between studied species in physiological alterations resulting from progressive response as injuries and/or acclimation to long-term soil drought during various stages of plant development. The measurements of leaf water potential, electrolyte leakage, chlorophyll a fluorescence, leaf gas exchange and yield analysis were done. A special emphasis was given to the measurements of the blue, green, red and far-red fluorescence. Beside, different ratios of the four fluorescence bands (red/far-red: F690/F740, blue/red: F440/F690, blue/far-red: F440/F740 and blue/green: F440/F520) were calculated. Based on both yield analysis and measurements of physiological processes it can be suggested that field bean and maize responded with better tolerance to the water deficit in soil due to the activation of photoprotective mechanism probably connected with synthesis of the phenolic compounds, which can play a role of photoprotectors in different stages of plant development. The photosynthetic apparatus of those two species scattered the excess of excitation energy more effectively, partially through its transfer to PS I. In this way, plants avoided irreversible and/or deep injuries to PS II. The observed changes in the red fluorescence emission and in the Fv/Fm for triticale and amaranth could have occurred due to serious and irreversible photoinhibitory injuries. Probably, field bean and maize acclimatized more effectively to soil drought through the development of effective mechanisms for utilising excitation energy in the photosynthetic conversion of light accompanied by the mechanism protecting the photosynthetic apparatus against the excess of this energy.
International Journal of Molecular Sciences | 2013
Izabela Marcińska; Ilona Czyczyło-Mysza; Edyta Skrzypek; Maciej T. Grzesiak; Franciszek Janowiak; Maria Filek; Michał Dziurka; Kinga Dziurka; Piotr Waligórski; Katarzyna Juzoń; Katarzyna Cyganek; S. Grzesiak
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity.
Journal of Plant Physiology | 2012
Tomasz Hura; Katarzyna Hura; Kinga Dziurka; Agnieszka Ostrowska; Renata Bączek-Kwinta; Maciej T. Grzesiak
The objective of this study was to investigate whether the content of cell wall-bound phenolics can simultaneously influence both the productivity and the water status of triticale under soil drought conditions. Two parallel treatments were carried out. The T1 treatment involved plants being subjected to soil drought twice, during the tillering phase and then during the flowering phase. The T2 treatment included drought only during the flowering phase. After T1 treatment, the majority of cultivars exhibited better PSII functioning at the flowering phase in comparison to T2, which could be related to better adaptation of the photosynthetic apparatus to leaf dehydration. Simultaneously, the higher activity of the photosynthetic apparatus of flag leaves for T1 was significantly correlated with the higher content of cell wall-bound phenolics. The dry mass of plants was markedly lower in the T1 treatment and was correlated with a higher content of cell wall-bound phenolics. Moreover, cultivars subjected to the T1 treatment showed a significantly higher water content in comparison to the T2 treatment. The delay in the leaf rolling and the ageing of plants in the T1 treatment, which induced a higher level of cell wall-bound phenolics, was visual proof of the improvement in the water status of plants. Phenolic compounds that form cross-bridges with carbohydrates of the cell wall can be considered a more effective biochemical protective mechanism than free phenolics during the dehydration of leaves. This potentially higher level of effectiveness is likely the result of the double action of phenolic compounds, both as photoprotectors of the photosynthetic apparatus and hydrophobic stabilizers, preventing water loss from the apoplast.
Acta Physiologiae Plantarum | 1999
Staniłsaw Grzesiak; Tomasz Hura; Maciej T. Grzesiak; Sebastian Pieńkowski
Effects of soil drought or waterlogging on the morphological traits of the root system and internal root anatomy were studied in maize hybrids of different drought tolerance. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system and some traits of the anatomical structure of the seminal root. Obtained results have demonstrated a relatively broad variation in the habit of the root system. This mainly refers, to the number, length and dry matter of lateral roots, developed by seminal root, seminal adventitious and nodal roots as well as to some anatomical properties of the stele, cortex and metaxylem elements.Plants grown under waterlogging or drought conditions showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effect of waterlogging conditions on the growth of roots was greater when compared with that of plants exposed to drought. In the measurements of the root morphological traits, the effect of soil drought on the internal root anatomical characteristic was weaker than the effect of soil waterlogging. The observed effects of both treatments were more distinct in a drought sensitive hybrid Pioneer D than in drought resistant Pioneer C one. The drought resistant hybrid Pioneer C distinguished by a more extensive rooting and by smaller alterations in the root morphology caused by the stress conditions than drought sensitive hybrid Pioneer D one. Also the differences between the resistant and the sensitive maize hybrids were apparent for examined root anatomical traits. Results confirm that the hybrid Pioneer D of a high drought susceptibility was found to be also more sensitive to periodieal soil water excess. A more efficient water use and a lower shoot to root (S:R) ratio were found to be major reasons for a higher stress resistance of the hybrid Pioneer C.The reasons for a different response of the examined hybrids to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant genotype. The observed modifications of the internal root structure caused by water deficit in plant tissues may partly influence on water conductivity and transport within roots.The results suggest that the morphological and anatomical traits of the maize root system may be used in practice as direct or indirect selection criteria in maize breeding.
Acta Physiologiae Plantarum | 2003
S. Grzesiak; Maciej T. Grzesiak; W. Filek; Joanna Stabryła
Effects of soil drought on crop yield of 4 strains and 7 cultivars of spring triticale was investigated under field condition. The Drought Susceptibility Index (DSI) was evaluated in a two year experiment by the determination of grain loss in conditions of two soil moisture levels (drought-D and irrigated-IR). In the experiment response to drought was evaluated by different screening tests (leaf gaseous exchange, leaf water potential, chlorophyll content and fluorescence, leaf injury by drought and by simulated drought and heat temperature and water loss by excited leaf. The DSI values and the results of screening tests showed the genetic variation in the degree of drought tolerance. The values of DSI enabled the ranking of the tested triticale genotypes with respect to their drought tolerance and allow to divide them into three groups of drought susceptibility. Large differences among studied forms were observed also in changes of leaf water potential, fluorescence and leaf injury. For plants in vegetative stage of growth the tested breeding forms were easily separated into groups of different drought tolerance. Changes of ψ, Fv/Fm and LI as a screening tests were the most suitable techniques for estimation of degree of drought tolerance for triticale. Laboratory screening tests (leaf injury by simulated drought (LIDS) and high temperature (LIHT) and water loss (WL) of excited leaf conducted for nonstressed plants in most cases were significantly correlated with DSI. The statistically significant correlation between leaf water potential (ψ) was observed only with leaf fluorescence (Fv/Fm). Changes of Fv/Fm were significantly correlated with ψ, LI and LIHT for 50 °C. Index of leaf injury (LI) by soil drought were significantly correlated with Fv/Fm, LIDS (−1.0, −1.5 MPa), LIHT (45 and 50°C) and water loss (WL). The correlation coefficient between the tests LIDS and LIHT were most of the considered cases statistically significant which indicate that the mechanism of membranes injury resulted from simulated drought or high temperature were similar in triticale. Water loss (WL) of excited leaves was the most suitable test for screening drought tolerance in triticale population. Changes of gaseous exchange parameters were not useful as screening test in this research.
Acta Physiologiae Plantarum | 2006
Tomasz Hura; S. Grzesiak; Katarzyna Hura; Maciej T. Grzesiak; Andrzej Rzepka
The studies were carried out in order to estimate differences in the physiological state between triticale and maize plants subjected to drought stress followed by rehydration. The physiological state of the plants was evaluated by measurements of leaf water potential, net photosynthesis, transpiration and stomatal conductance. Spectrofluorimetric methods for the study of blue, green and red fluorescence were applied.We observed that the soil drought induced a greater water loss in triticale leaves than in maize and consequently caused greater injuries to the photosynthetic apparatus. Moreover, triticale plant recovery was slower than in maize plants during the rehydration phase. The effect was probably connected with the higher functional and structural disorganisation of the photosynthetic apparatus observed during drought stress in triticale. Water stress is responsible for damages to photosystem PS II. The worst light utilisation in photosynthetic light conversion was recorded as an increase in the intensity of red fluorescence. Drought stress induced a strong increase in the intensity of blue and green fluorescence in the studied species and it was still high in maize plants during the first day of rehydration. Increase in the intensity of blue and green fluorescence in maize seems to be the effect of the photoprotection mechanism which prevents damage to PS II through utilisation of excess energy.
Photosynthetica | 2007
Maciej T. Grzesiak; Andrzej Rzepka; Tomasz Hura; Katarzyna Hura; Andrzej Skoczowski
Direct effects and after-effects of soil drought for 7 and 14 d were examined on seedling dry matter, leaf water potential (ψ), leaf injury index (LI), and chlorophyll (Chl) content of drought (D) resistant and sensitive triticale and maize genotypes. D caused higher decrease in number of developed leaves and dry matter of shoots and roots in the sensitive genotypes than in the resistant ones. Soil D caused lower decrease of ψ in the triticale than maize leaves. Influence of D on the Chl b content was considerably lower than on the Chl a content. In triticale the most harmful D impact was observed for physiologically younger leaves, in maize for the older ones. A period of 7-d-long recovery was too short for a complete removal of an adverse influence of D.
Acta Physiologiae Plantarum | 2002
S. Grzesiak; Maciej T. Grzesiak; W. Filek; Tomasz Hura; Joanna Stabryła
Effects of different soil moisture (soil drought and waterlogging) and soil compaction (1.33 and 1.50 g·cm−3) on the growth and morphological traits of the root system were studied in four breeding forms and seven cultivars of triticale. Morphological changes, including the restriction of root extension, expansion and proliferation of laterals roots, occur in plants grown in different soil moisture and in compact soil. The investigations comprised quantitative and qualitative analyses of a developed plant root system through determining the number, length and dry matter of the particular components of the root system.Obtained results have demonstrated a relatively broad variation in the habit of the triticale root system. Plants grown under compact soil and low or high soil water content showed a smaller number and less dry matter of lateral branching than plants grown in control conditions. The harmful effects of compact soil and drought conditions on the growth of roots was greater when compared with that of plants exposed to waterlogging. The observed effects of all treatments were more distinct in a drought sensitive strains. The drought resistant forms were a more characterize with extensive rooting and by smaller alterations in the root morphology under the stress conditions compared with drought sensitive one. Results confirm that the breeding forms (CHD-12 and CHD-173) of a high drought susceptibility was found to be also more sensitive to periodical soil water excess. A more efficient water use and a lower shoot to root (S/R) ratio were found to be major reasons for a higher stress resistance of the breeding forms (CHD-220 and CHD-247). The reasons for a different response of the examined breeding forms and cultivars to the conditions of drought or waterlogging may be a more economical water balance and more favourable relations between the shoot and root dimensions in the drought resistant forms and cultivars. The results suggest that the morphological traits of the triticale root system may be used in practice as direct or indirect selection criteria in maize breeding.
Acta Physiologiae Plantarum | 2013
Maciej T. Grzesiak; Piotr Waligórski; Franciszek Janowiak; Izabela Marcińska; Katarzyna Hura; Piotr Szczyrek; Tomasz Głąb
The physiological reasons for the differences in sensitivity of C3 and C4 plant species to environmental stresses have not been thoroughly explained. In this study the effects of drought stress on the growth and selected physiological traits were examined in the seedlings of 13 single cross maize (C4 plant) hybrids and 11 spring triticale (C3 plant) breeding lines and varieties differing in drought sensitivity. For plants in the seedling stage the results demonstrated a genetic variation in dry matter accumulation of shoots and roots (DWS, DWR), number (N) and length (L) of particular components (seminal, seminal adventitious, nodal) of the root system, membrane injury by soil drought (LID), osmotic and high temperature stress (LIOS, LIHT), water potential (ψ), water loss (WL), grain germination in osmotic stress (FG, PI), and seedling survival (SS). Seedlings grown under moderate soil drought showed a decrease in dry matter of the top parts and roots and a decrease in the length of seminal, seminal adventitious and nodal roots in comparison to seedlings grown in control conditions. The observed harmful effects of drought stress were more distinct in drought sensitive genotypes. Used in this paper drought susceptibility indexes (DSIGY) were calculated in other experiment by determining the changes in grain yield (GY) under two soil moisture levels (irrigated and drought). The variation of DSIGY for maize ranges from 0.381 to 0.650 and for triticale from 0.354 to 0.578. The correlations between DSIGY and laboratory tests (LI, FG, SS) confirmed that they are good indicators of drought tolerance in plants. The highest values of genetic variation were observed in LI, DWS, SS and WL and the lowest in the measurements of ψ FG, PI, LS, LSA and LN. The correlation coefficients between LIOS and LIHT tests were, in most of the considered cases, statistically significant, which indicates that in maize and triticale the mechanisms of membrane injury caused by simulated drought or high temperature are physiologically similar. It can be concluded that an approach to the breeding of maize and triticale for drought tolerance using these tests can be implemented on the basis of separate selection for each trait or for all of them simultaneously. In that case, it would be necessary to determine the importance of the trait in relation to growth phase, drought timing and level, as well as its associations with morphological traits contributing to drought tolerance. The obtained values of the correlation coefficient between laboratory tests suggest that the same physiological traits may be applied as selection criteria in drought tolerance of maize and triticale genotypes.
Acta Physiologiae Plantarum | 2012
Maciej T. Grzesiak; Izabela Marcińska; Franciszek Janowiak; Andrzej Rzepka; Tomasz Hura
The effects of drought stress on seedlings’ growth and grain yield of 13 single cross maize hybrids and 11 breeding lines and cultivars of spring triticale were studied in greenhouse and field experiments. In the field experiment, the drought susceptibility index (DSIGY) was calculated by determining the change in grain yield (GY) in conditions with two soil moisture levels (IR, irrigated; D, drought). In the greenhouse experiment the response to soil drought was evaluated using DSIDW, by determining changes in the dry weight (DW) of vegetative plant parts. Marked variations in GY and DW were observed among the studied genotypes. In control conditions, the GY and DW in drought-sensitive genotypes were higher compared to the drought-resistant ones; but in drought conditions, the decreases in GY and DW in resistant genotypes were smaller than in drought-sensitive ones. DSIGY and DSIDW revealed variations in the degree of drought tolerance among the examined maize and triticale genotypes. The values of DSIGY in the field experiment and DSIDW in the greenhouse experiment enabled a division of the studied genotypes into drought-resistant or -sensitive groups. A close correlation between DSIGY and DSIDW was found. The positive linear correlation and determination coefficients between DSIGY and DSIDW were statistically significant (P = 0.05), being equal to R2 = 0.614 (maize) and R2 = 0.535 (triticale). The ranking of the studied genotypes based on DSIGY was in most cases consistent with the ranking based on DSIDW, which indicates that genetically conditioned drought tolerance is similar for plants in the seedling and reproductive growth stages or may at least partly have a common genetic background.