Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madhav P. Thakur is active.

Publication


Featured researches published by Madhav P. Thakur.


Nature | 2015

Biodiversity Increases the Resistance of Ecosystem Productivity to Climate Extremes

Forest Isbell; Dylan Craven; John Connolly; Michael Loreau; Bernhard Schmid; Carl Beierkuhnlein; T. Martin Bezemer; Catherine L. Bonin; Helge Bruelheide; Enrica De Luca; Anne Ebeling; John N. Griffin; Qinfeng Guo; Yann Hautier; Andy Hector; Anke Jentsch; Jürgen Kreyling; Vojtěch Lanta; Peter Manning; Sebastian T. Meyer; Akira Mori; Shahid Naeem; Pascal A. Niklaus; H. Wayne Polley; Peter B. Reich; Christiane Roscher; Eric W. Seabloom; Melinda D. Smith; Madhav P. Thakur; David Tilman

It remains unclear whether biodiversity buffers ecosystems against climate extremes, which are becoming increasingly frequent worldwide. Early results suggested that the ecosystem productivity of diverse grassland plant communities was more resistant, changing less during drought, and more resilient, recovering more quickly after drought, than that of depauperate communities. However, subsequent experimental tests produced mixed results. Here we use data from 46 experiments that manipulated grassland plant diversity to test whether biodiversity provides resistance during and resilience after climate events. We show that biodiversity increased ecosystem resistance for a broad range of climate events, including wet or dry, moderate or extreme, and brief or prolonged events. Across all studies and climate events, the productivity of low-diversity communities with one or two species changed by approximately 50% during climate events, whereas that of high-diversity communities with 16–32 species was more resistant, changing by only approximately 25%. By a year after each climate event, ecosystem productivity had often fully recovered, or overshot, normal levels of productivity in both high- and low-diversity communities, leading to no detectable dependence of ecosystem resilience on biodiversity. Our results suggest that biodiversity mainly stabilizes ecosystem productivity, and productivity-dependent ecosystem services, by increasing resistance to climate events. Anthropogenic environmental changes that drive biodiversity loss thus seem likely to decrease ecosystem stability, and restoration of biodiversity to increase it, mainly by changing the resistance of ecosystem productivity to climate events.


Philosophical Transactions of the Royal Society B | 2016

Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

Dylan Craven; Forest Isbell; Peter Manning; John Connolly; Helge Bruelheide; Anne Ebeling; Christiane Roscher; Jasper van Ruijven; Alexandra Weigelt; Brian J. Wilsey; Carl Beierkuhnlein; Enrica De Luca; John N. Griffin; Yann Hautier; Andy Hector; Anke Jentsch; Jürgen Kreyling; Vojtech Lanta; Michel Loreau; Sebastian T. Meyer; Akira Mori; Shahid Naeem; Cecilia Palmborg; H. Wayne Polley; Peter B. Reich; Bernhard Schmid; Alrun Siebenkäs; Eric W. Seabloom; Madhav P. Thakur; David Tilman

Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function.


Global Change Biology | 2017

The unseen invaders: introduced earthworms as drivers of change in plant communities in North American forests (a meta-analysis).

Dylan Craven; Madhav P. Thakur; Erin K. Cameron; Lee E. Frelich; Robin Beauséjour; Robert B. Blair; Bernd Blossey; James C. Burtis; Amy Choi; Andrea Dávalos; Timothy J. Fahey; Nicholas A. Fisichelli; Kevin Gibson; I. Tanya Handa; Kristine N. Hopfensperger; Scott R. Loss; Victoria Nuzzo; John C. Maerz; Tara E. Sackett; Bryant C. Scharenbroch; Sandy M. Smith; Mark Vellend; Lauren Umek; Nico Eisenhauer

Abstract Globally, biological invasions can have strong impacts on biodiversity as well as ecosystem functioning. While less conspicuous than introduced aboveground organisms, introduced belowground organisms may have similarly strong effects. Here, we synthesize for the first time the impacts of introduced earthworms on plant diversity and community composition in North American forests. We conducted a meta‐analysis using a total of 645 observations to quantify mean effect sizes of associations between introduced earthworm communities and plant diversity, cover of plant functional groups, and cover of native and non‐native plants. We found that plant diversity significantly declined with increasing richness of introduced earthworm ecological groups. While plant species richness or evenness did not change with earthworm invasion, our results indicate clear changes in plant community composition: cover of graminoids and non‐native plant species significantly increased, and cover of native plant species (of all functional groups) tended to decrease, with increasing earthworm biomass. Overall, these findings support the hypothesis that introduced earthworms facilitate particular plant species adapted to the abiotic conditions of earthworm‐invaded forests. Further, our study provides evidence that introduced earthworms are associated with declines in plant diversity in North American forests. Changing plant functional composition in these forests may have long‐lasting effects on ecosystem functioning.


Scientific Reports | 2017

Root biomass and exudates link plant diversity with soil bacterial and fungal biomass

Nico Eisenhauer; Arnaud Lanoue; Tanja Strecker; Stefan Scheu; Katja Steinauer; Madhav P. Thakur; Liesje Mommer

Plant diversity has been shown to determine the composition and functioning of soil biota. Although root-derived organic inputs are discussed as the main drivers of soil communities, experimental evidence is scarce. While there is some evidence that higher root biomass at high plant diversity increases substrate availability for soil biota, several studies have speculated that the quantity and diversity of root inputs into the soil, i.e. though root exudates, drive plant diversity effects on soil biota. Here we used a microcosm experiment to study the role of plant species richness on the biomass of soil bacteria and fungi as well as fungal-to-bacterial ratio via root biomass and root exudates. Plant diversity significantly increased shoot biomass, root biomass, the amount of root exudates, bacterial biomass, and fungal biomass. Fungal biomass increased most with increasing plant diversity resulting in a significant shift in the fungal-to-bacterial biomass ratio at high plant diversity. Fungal biomass increased significantly with plant diversity-induced increases in root biomass and the amount of root exudates. These results suggest that plant diversity enhances soil microbial biomass, particularly soil fungi, by increasing root-derived organic inputs.


Scientific Reports | 2015

Plant community composition determines the strength of top-down control in a soil food web motif.

Madhav P. Thakur; Nico Eisenhauer

Top-down control of prey by predators are magnified in productive ecosystems due to higher sustenance of prey communities. In soil micro-arthropod food webs, plant communities regulate the availability of basal resources like soil microbial biomass. Mixed plant communities are often associated with higher microbial biomass than monocultures. Therefore, top-down control is expected to be higher in soil food webs of mixed plant communities. Moreover, higher predator densities can increase the suppression of prey, which can induce interactive effects between predator densities and plant community composition on prey populations. Here, we tested the effects of predator density (predatory mites) on prey populations (Collembola) in monoculture and mixed plant communities. We hypothesized that top-down control would increase with predator density but only in the mixed plant community. Our results revealed two contrasting patterns of top-down control: stronger top-down control of prey communities in the mixed plant community, but weaker top-down control in plant monocultures in high predator density treatments. As expected, higher microbial community biomass in the mixed plant community sustained sufficiently high prey populations to support high predator density. Our results highlight the roles of plant community composition and predator densities in regulating top-down control of prey in soil food webs.


Trends in Ecology and Evolution | 2017

Environmental Filtering, Niche Construction, and Trait Variability: The Missing Discussion

Madhav P. Thakur; Alexandra J. Wright

Ecologists have recently both criticized and defended the environmental filtering concept [1,2]. Such discussions are crucial for advancing our understanding of community assembly mechanisms and trait–environment relationships. Here, we suggest a modification of the discussion, to focus on the combined effects of environmental filtering (e.g., annual temperature or precipitation or elevation) and niche construction by species (e.g., physical structures such as a bird’s nest or earthworm’s cast or beaver’s dam; shade by a tall plant or plant-induced modification in soil chemistry).


Science Advances | 2017

Climate warming promotes species diversity, but with greater taxonomic redundancy, in complex environments

Madhav P. Thakur; David Tilman; Oliver Purschke; Marcel Ciobanu; Jane M. Cowles; Forest Isbell; Peter D. Wragg; Nico Eisenhauer

Climate warming reduces biodiversity in simpler environments but enhances it in complex environments. Climate warming is predicted to alter species interactions, which could potentially lead to extinction events. However, there is an ongoing debate whether the effects of warming on biodiversity may be moderated by biodiversity itself. We tested warming effects on soil nematodes, one of the most diverse and abundant metazoans in terrestrial ecosystems, along a gradient of environmental complexity created by a gradient of plant species richness. Warming increased nematode species diversity in complex (16-species mixtures) plant communities (by ~36%) but decreased it in simple (monocultures) plant communities (by ~39%) compared to ambient temperature. Further, warming led to higher levels of taxonomic relatedness in nematode communities across all levels of plant species richness. Our results highlight both the need for maintaining species-rich plant communities to help offset detrimental warming effects and the inability of species-rich plant communities to maintain nematode taxonomic distinctness when warming occur.


Journal of Animal Ecology | 2018

Invasive earthworms erode soil biodiversity: a meta-analysis.

Olga Ferlian; Nico Eisenhauer; Martin Aguirrebengoa; Mariama Camara; Irene Ramirez‐Rojas; Fábio Santos; Krizler Cejuela Tanalgo; Madhav P. Thakur

Biological invasions pose a serious threat to biodiversity and ecosystem functioning across ecosystems. Invasions by ecosystem engineers, in particular, have been shown to have dramatic effects in recipient ecosystems. For instance, invasion by earthworms, a below-ground invertebrate ecosystem engineer, in previously earthworm-free ecosystems alters the physico-chemical characteristics of the soil. Studies have shown that such alterations in the soil can have far-reaching impacts on soil organisms, which form a major portion of terrestrial biodiversity. Here, we present the first quantitative synthesis of earthworm invasion effects on soil micro-organisms and soil invertebrates based on 430 observations from 30 independent studies. Our meta-analysis shows a significant decline of the diversity and density of soil invertebrates in response to earthworm invasion with anecic and endogeic earthworms causing the strongest effects. Earthworm invasion effects on soil micro-organisms were context-dependent, such as depending on functional group richness of invasive earthworms and soil depth. Microbial biomass and diversity increased in mineral soil layers, with a weak negative effect in organic soil layers, indicating that the mixing of soil layers by earthworms (bioturbation) may homogenize microbial communities across soil layers. Our meta-analysis provides a compelling evidence for negative effects of a common invasive below-ground ecosystem engineer on below-ground biodiversity of recipient ecosystems, which could potentially alter the ecosystem functions and services linked to soil biota.


Journal of Plant Ecology-uk | 2016

Effects of soil warming history on the performances of congeneric temperate and boreal herbaceous plant species and their associations with soil biota

Madhav P. Thakur; Peter B. Reich; Cameron Wagg; Nicholas A. Fisichelli; Marcel Ciobanu; Sarah E. Hobbie; Roy L. Rich; Artur Stefanski; Nico Eisenhauer

Aims Climate warming raises the probability of range expansions of warmadapted temperate species into areas currently dominated by coldadapted boreal species. Warming-induced plant range expansions could partly depend on how warming modifies relationships with soil biota that promote plant growth, such as by mineralizing nutrients. Here, we grew two pairs of congeneric herbaceous plants species together in soil with a 5-year warming history (ambient, +1.7°C, +3.4°C) and related their performances to plant-beneficial soil biota. Methods Each plant pair belonged to either the mid-latitude temperate climate or the higher latitude southern boreal climate. Warmed soils were extracted from a chamberless heating experiment at two field sites in the temperate-boreal ecotone of North America. To isolate potential effects of different soil warming histories, air temperature for the greenhouse experiment was identical across soils. We hypothesized that soil with a 5-year warming history in the field would enhance the performance of temperate plant species more than boreal plant species and expected improved plant performances to have positive associations with plant growth-promoting soil biota (microbialfeeding nematodes and arbuscular mycorrhizal fungi). Important Findings Our main hypothesis was partly confirmed as only one temperate species performed better in soil with warming history than in soil with history of ambient temperature. Further, this effect was restricted to the site with higher soil water content in the growing season of the sampling year (prior to soil collection). One of the boreal species performed consistently worse in previously warmed soil, whereas the other species showed neutral responses to soil warming history. We found a positive correlation between the density of microbial-feeding nematodes and the performance of one of the temperate species in previously wetter soils, but this correlation was negative at the site with previously drier soil. We found no significant correlations between the performance of the other temperate species as well as the two boreal species and any of the studied soil biota. Our results indicate that soil warming can modify the relation between certain plant species and microbialfeeding nematodes in given soil edaphic conditions, which might be important for plant performance in the temperate-boreal ecotone. Thakur et al. | Effects of soil warming history 671


Ecology and Evolution | 2015

Cascading effects of belowground predators on plant communities are density-dependent.

Madhav P. Thakur; Martina Herrmann; Katja Steinauer; Saskia Rennoch; Simone Cesarz; Nico Eisenhauer

Abstract Soil food webs comprise a multitude of trophic interactions that can affect the composition and productivity of plant communities. Belowground predators feeding on microbial grazers like Collembola could decelerate nutrient mineralization by reducing microbial turnover in the soil, which in turn could negatively influence plant growth. However, empirical evidences for the ecological significance of belowground predators on nutrient cycling and plant communities are scarce. Here, we manipulated predator density (Hypoaspis aculeifer: predatory mite) with equal densities of three Collembola species as a prey in four functionally dissimilar plant communities in experimental microcosms: grass monoculture (Poa pratensis), herb monoculture (Rumex acetosa), legume monoculture (Trifolium pratense), and all three species as a mixed plant community. Density manipulation of predators allowed us to test for density‐mediated effects of belowground predators on Collembola and lower trophic groups. We hypothesized that predator density will reduce Collembola population causing a decrease in nutrient mineralization and hence detrimentally affect plant growth. First, we found a density‐dependent population change in predators, that is, an increase in low‐density treatments, but a decrease in high‐density treatments. Second, prey suppression was lower at high predator density, which caused a shift in the soil microbial community by increasing the fungal: bacterial biomass ratio, and an increase of nitrification rates, particularly in legume monocultures. Despite the increase in nutrient mineralization, legume monocultures performed worse at high predator density. Further, individual grass shoot biomass decreased in monocultures, while it increased in mixed plant communities with increasing predator density, which coincided with elevated soil N uptake by grasses. As a consequence, high predator density significantly increased plant complementarity effects indicating a decrease in interspecific plant competition. These results highlight that belowground predators can relax interspecific plant competition by increasing nutrient mineralization through their density‐dependent cascading effects on detritivore and soil microbial communities.

Collaboration


Dive into the Madhav P. Thakur's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy L. Rich

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Tilman

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane Roscher

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge