Madhusudhanan Sukumar
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Madhusudhanan Sukumar.
Journal of Clinical Investigation | 2013
Madhusudhanan Sukumar; Jie Liu; Yun Ji; Murugan Subramanian; Joseph G. Crompton; Zhiya Yu; Rahul Roychoudhuri; Douglas C. Palmer; Pawel Muranski; Edward D. Karoly; Robert P. Mohney; Christopher A. Klebanoff; Ashish Lal; Toren Finkel; Nicholas P. Restifo; Luca Gattinoni
Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell-based therapies against chronic infectious diseases and cancer.
Immunity | 2011
Pawel Muranski; Zachary A. Borman; Sid P. Kerkar; Christopher A. Klebanoff; Yun Ji; Luis Sanchez-Perez; Madhusudhanan Sukumar; Robert N. Reger; Zhiya Yu; Steven J. Kern; Rahul Roychoudhuri; Gabriela A. Ferreyra; Wei Shen; Scott K. Durum; Lionel Feigenbaum; Douglas C. Palmer; Paul A. Antony; Chi-Chao Chan; Arian Laurence; Robert L. Danner; Luca Gattinoni; Nicholas P. Restifo
Th17 cells have been described as short lived, but this view is at odds with their capacity to trigger protracted damage to normal and transformed tissues. We report that Th17 cells, despite displaying low expression of CD27 and other phenotypic markers of terminal differentiation, efficiently eradicated tumors and caused autoimmunity, were long lived, and maintained a core molecular signature resembling early memory CD8(+) cells with stem cell-like properties. In addition, we found that Th17 cells had high expression of Tcf7, a direct target of the Wnt and β-catenin signaling axis, and accumulated β-catenin, a feature observed in stem cells. In vivo, Th17 cells gave rise to Th1-like effector cell progeny and also self-renewed and persisted as IL-17A-secreting cells. Multipotency was required for Th17 cell-mediated tumor eradication because effector cells deficient in IFN-γ or IL-17A had impaired activity. Thus, Th17 cells are not always short lived and are a less-differentiated subset capable of superior persistence and functionality.
Nature Immunology | 2011
Yun Ji; Zoltan Pos; Mahadev Rao; Christopher A. Klebanoff; Zhiya Yu; Madhusudhanan Sukumar; Robert N. Reger; Douglas C. Palmer; Zachary A. Borman; Pawel Muranski; Ena Wang; David S. Schrump; Francesco M. Marincola; Nicholas P. Restifo; Luca Gattinoni
The transcriptional repressor Blimp-1 promotes the differentiation of CD8+ T cells into short-lived effector cells (SLECs) that express the lectin-like receptor KLRG-1, but how it operates remains poorly defined. Here we show that Blimp-1 bound to and repressed the promoter of the gene encoding the DNA-binding inhibitor Id3 in SLECs. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited the ability of SLECs to persist as memory cells. Enforced expression of Id3 was sufficient to restore SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of the transcriptional activity of E2A and induction of genes regulating genome stability. Our findings identify the Blimp-1–Id3–E2A axis as a key molecular switch that determines whether effector CD8+ T cells are programmed to die or enter the memory pool.
Cancer Research | 2015
Joseph G. Crompton; Madhusudhanan Sukumar; Rahul Roychoudhuri; David Clever; Alena Gros; Robert L. Eil; Eric Tran; Ken Ichi Hanada; Zhiya Yu; Douglas C. Palmer; Sid P. Kerkar; Ryan D. Michalek; Trevor Upham; Anthony J. Leonardi; Nicolas Acquavella; Ena Wang; Francesco M. Marincola; Luca Gattinoni; Pawel Muranski; Mark S. Sundrud; Christopher A. Klebanoff; Steven A. Rosenberg; Nicholas P. Restifo
Adoptive cell therapy (ACT) using autologous tumor-infiltrating lymphocytes (TIL) results in complete regression of advanced cancer in some patients, but the efficacy of this potentially curative therapy may be limited by poor persistence of TIL after adoptive transfer. Pharmacologic inhibition of the serine/threonine kinase Akt has recently been shown to promote immunologic memory in virus-specific murine models, but whether this approach enhances features of memory (e.g., long-term persistence) in TIL that are characteristically exhausted and senescent is not established. Here, we show that pharmacologic inhibition of Akt enables expansion of TIL with the transcriptional, metabolic, and functional properties characteristic of memory T cells. Consequently, Akt inhibition results in enhanced persistence of TIL after adoptive transfer into an immunodeficient animal model and augments antitumor immunity of CD8 T cells in a mouse model of cell-based immunotherapy. Pharmacologic inhibition of Akt represents a novel immunometabolomic approach to enhance the persistence of antitumor T cells and improve the efficacy of cell-based immunotherapy for metastatic cancer.
Nature | 2017
Shashank J. Patel; Neville E. Sanjana; Rigel J. Kishton; Arash Eidizadeh; Suman K. Vodnala; Maggie Cam; Jared J. Gartner; Li Jia; Seth M. Steinberg; Tori N. Yamamoto; Anand Merchant; Gautam U. Mehta; Anna Chichura; Ophir Shalem; Eric Tran; Robert L. Eil; Madhusudhanan Sukumar; Eva Perez Guijarro; Chi-Ping Day; Paul D. Robbins; Steve Feldman; Glenn Merlino; Feng Zhang; Nicholas P. Restifo
Somatic gene mutations can alter the vulnerability of cancer cells to T-cell-based immunotherapies. Here we perturbed genes in human melanoma cells to mimic loss-of-function mutations involved in resistance to these therapies, by using a genome-scale CRISPR–Cas9 library that consisted of around 123,000 single-guide RNAs, and profiled genes whose loss in tumour cells impaired the effector function of CD8+ T cells. The genes that were most enriched in the screen have key roles in antigen presentation and interferon-γ signalling, and correlate with cytolytic activity in patient tumours from The Cancer Genome Atlas. Among the genes validated using different cancer cell lines and antigens, we identified multiple loss-of-function mutations in APLNR, encoding the apelin receptor, in patient tumours that were refractory to immunotherapy. We show that APLNR interacts with JAK1, modulating interferon-γ responses in tumours, and that its functional loss reduces the efficacy of adoptive cell transfer and checkpoint blockade immunotherapies in mouse models. Our results link the loss of essential genes for the effector function of CD8+ T cells with the resistance or non-responsiveness of cancer to immunotherapies.
Nature | 2016
Robert L. Eil; Suman K. Vodnala; David Clever; Christopher A. Klebanoff; Madhusudhanan Sukumar; Jenny H. Pan; Douglas C. Palmer; Alena Gros; Tori N. Yamamoto; Shashank J. Patel; Geoffrey Guittard; Zhiya Yu; Valentina Carbonaro; Klaus Okkenhaug; David S. Schrump; W. Marston Linehan; Rahul Roychoudhuri; Nicholas P. Restifo
Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K+]e) impairs T cell receptor (TCR)-driven Akt–mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt–mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K+]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K+]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K+]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.
Journal of Experimental Medicine | 2013
Christopher A. Klebanoff; Sean P. Spencer; Parizad Torabi-Parizi; John Grainger; Rahul Roychoudhuri; Yun Ji; Madhusudhanan Sukumar; Pawel Muranski; Christopher D. Scott; Jason A. Hall; Gabriela A. Ferreyra; Anthony J. Leonardi; Zachary A. Borman; Jinshan Wang; Douglas C. Palmer; Christoph Wilhelm; Rongman Cai; Junfeng Sun; Joseph L. Napoli; Robert L. Danner; Luca Gattinoni; Yasmine Belkaid; Nicholas P. Restifo
Retinoic acid is required to maintain pre-DC–derived CD11b+CD8α−Esamhigh dendritic cells (DCs) in the spleen and CD11b+CD103+ DCs in the gut.
Cell Metabolism | 2016
Madhusudhanan Sukumar; Jie Liu; Gautam U. Mehta; Shashank J. Patel; Rahul Roychoudhuri; Joseph G. Crompton; Christopher A. Klebanoff; Yun Ji; Peng Li; Zhiya Yu; Greg Whitehill; David Clever; Robert L. Eil; Douglas C. Palmer; Suman Mitra; Mahadev Rao; Keyvan Keyvanfar; David S. Schrump; Ena Wang; Francesco M. Marincola; Luca Gattinoni; Warren J. Leonard; Pawel Muranski; Toren Finkel; Nicholas P. Restifo
Long-term survival and antitumor immunity of adoptively transferred CD8(+) T cells is dependent on their metabolic fitness, but approaches to isolate therapeutic T cells based on metabolic features are not well established. Here we utilized a lipophilic cationic dye tetramethylrhodamine methyl ester (TMRM) to identify and isolate metabolically robust T cells based on their mitochondrial membrane potential (ΔΨm). Comprehensive metabolomic and gene expression profiling demonstrated global features of improved metabolic fitness in low-ΔΨm-sorted CD8(+) T cells. Transfer of these low-ΔΨm T cells was associated with superior long-term in vivo persistence and an enhanced capacity to eradicate established tumors compared with high-ΔΨm cells. Use of ΔΨm-based sorting to enrich for cells with superior metabolic features was observed in CD8(+), CD4(+) T cell subsets, and long-term hematopoietic stem cells. This metabolism-based approach to cell selection may be broadly applicable to therapies involving the transfer of HSC or lymphocytes for the treatment of viral-associated illnesses and cancer.
Journal of Clinical Investigation | 2016
Christopher A. Klebanoff; Christopher D. Scott; Anthony J. Leonardi; Tori N. Yamamoto; Anthony C. Cruz; Claudia Ouyang; Madhu Ramaswamy; Rahul Roychoudhuri; Yun Ji; Robert L. Eil; Madhusudhanan Sukumar; Joseph G. Crompton; Douglas C. Palmer; Zachary A. Borman; David Clever; Stacy K. Thomas; Shashankkumar Patel; Zhiya Yu; Pawel Muranski; Hui Liu; Ena Wang; Francesco M. Marincola; Alena Gros; Luca Gattinoni; Steven A. Rosenberg; Richard M. Siegel; Nicholas P. Restifo
Adoptive cell transfer (ACT) of purified naive, stem cell memory, and central memory T cell subsets results in superior persistence and antitumor immunity compared with ACT of populations containing more-differentiated effector memory and effector T cells. Despite a clear advantage of the less-differentiated populations, the majority of ACT trials utilize unfractionated T cell subsets. Here, we have challenged the notion that the mere presence of less-differentiated T cells in starting populations used to generate therapeutic T cells is sufficient to convey their desirable attributes. Using both mouse and human cells, we identified a T cell-T cell interaction whereby antigen-experienced subsets directly promote the phenotypic, functional, and metabolic differentiation of naive T cells. This process led to the loss of less-differentiated T cell subsets and resulted in impaired cellular persistence and tumor regression in mouse models following ACT. The T memory-induced conversion of naive T cells was mediated by a nonapoptotic Fas signal, resulting in Akt-driven cellular differentiation. Thus, induction of Fas signaling enhanced T cell differentiation and impaired antitumor immunity, while Fas signaling blockade preserved the antitumor efficacy of naive cells within mixed populations. These findings reveal that T cell subsets can synchronize their differentiation state in a process similar to quorum sensing in unicellular organisms and suggest that disruption of this quorum-like behavior among T cells has potential to enhance T cell-based immunotherapies.
Immunological Reviews | 2014
Joseph G. Crompton; Madhusudhanan Sukumar; Nicholas P. Restifo
Adoptive cellular immunotherapy (ACT) is a potentially curative therapy for patients with advanced cancer. Eradication of tumor in mouse models and humans correlates with both a high dose of adoptively transferred cells and cells with a minimally differentiated phenotype that maintain replicative capacity and multipotency. We speculate that response to ACT not only requires transfer of cells with immediate cytolytic effector function to kill the bulk of fast‐growing tumor but also transfer of tumor‐specific cells that maintain an ability for self‐renewal and the capacity to produce a continual supply of cytolytic effector progeny until all malignant cells are eliminated. Current in vitro methods to expand cells to sufficient numbers and still maintain a minimally differentiated phenotype are hindered by the biological coupling of clonal expansion and effector differentiation. Therefore, a better understanding of the physiologic mechanism that couples cell expansion and differentiation in CD8+ T cells may improve the efficacy of ACT.