Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mads Lerdrup is active.

Publication


Featured researches published by Mads Lerdrup.


Nature Cell Biology | 2008

A model for transmission of the H3K27me3 epigenetic mark

Klaus Hansen; Adrian P. Bracken; Diego Pasini; Nikolaj Dietrich; Simmi S. Gehani; Astrid Monrad; Juri Rappsilber; Mads Lerdrup; Kristian Helin

Organization of chromatin by epigenetic mechanisms is essential for establishing and maintaining cellular identity in developing and adult organisms. A key question that remains unresolved about this process is how epigenetic marks are transmitted to the next cell generation during cell division. Here we provide a model to explain how trimethylated Lys 27 of histone 3 (H3K27me3), which is catalysed by the EZH2-containing Polycomb Repressive Complex 2 (PRC2), is maintained in proliferating cells. We show that the PRC2 complex binds to the H3K27me3 mark and colocalizes with this mark in G1 phase and with sites of ongoing DNA replication. Efficient binding requires an intact trimeric PRC2 complex containing EZH2, EED and SUZ12, but is independent of the catalytic SET domain of EZH2. Using a heterologous reporter system, we show that transient recruitment of the PRC2 complex to chromatin, upstream of the transcriptional start site, is sufficient to maintain repression through endogenous PRC2 during subsequent cell divisions. Thus, we suggest that once the H3K27me3 is established, it recruits the PRC2 complex to maintain the mark at sites of DNA replication, leading to methylation of H3K27 on the daughter strands during incorporation of newly synthesized histones. This mechanism ensures maintenance of the H3K27me3 epigenetic mark in proliferating cells, not only during DNA replication when histones synthesized de novo are incorporated, but also outside S phase, thereby preserving chromatin structure and transcriptional programs.


Traffic | 2009

Differential Effects of EGFR Ligands on Endocytic Sorting of the Receptor

Kirstine Roepstorff; Michael V. Grandal; Lasse Henriksen; Stine Knudsen; Mads Lerdrup; Lene Melsæther Grøvdal; Berthe M. Willumsen; Bo van Deurs

Endocytic downregulation is a pivotal mechanism turning off signalling from the EGF receptor (EGFR). It is well established that whereas EGF binding leads to lysosomal degradation of EGFR, transforming growth factor (TGF)‐α causes receptor recycling. TGF‐α therefore leads to continuous signalling and is a more potent mitogen than EGF. In addition to EGF and TGF‐α, five EGFR ligands have been identified. Although many of these ligands are upregulated in cancers, very little is known about their effect on EGFR trafficking.


Histochemistry and Cell Biology | 2008

Endocytic downregulation of ErbB receptors: mechanisms and relevance in cancer

Kirstine Roepstorff; Lene Melsæther Grøvdal; Michael V. Grandal; Mads Lerdrup; Bo van Deurs

ErbB receptors (EGFR (ErbB1), ErbB2, ErbB3, and ErbB4) are important regulators of normal growth and differentiation, and they are involved in the pathogenesis of cancer. Following ligand binding and receptor activation, EGFR is endocytosed and transported to lysosomes where the receptor is degraded. This downregulation of EGFR is a complex and tightly regulated process. The functions of ErbB2, ErbB3, and ErbB4 are also regulated by endocytosis to some extent, although the current knowledge of these processes is sparse. Impaired endocytic downregulation of signaling receptors is frequently associated with cancer, since it can lead to increased and uncontrolled receptor signaling. In this review we describe the current knowledge of ErbB receptor endocytic downregulation. In addition, we outline how ErbB receptors can escape endocytic downregulation in cancer, and we discuss how targeted anti-cancer therapy may induce endocytic downregulation of ErbB receptors.


PLOS Genetics | 2012

REST-mediated recruitment of polycomb repressor complexes in mammalian cells

Nikolaj Dietrich; Mads Lerdrup; Eskild Landt; Shuchi Agrawal-Singh; Mads Bak; Niels Tommerup; Juri Rappsilber; Erik Södersten; Klaus Hansen

Polycomb Repressive Complex (PRC) 1 and PRC2 regulate genes involved in differentiation and development. However, the mechanism for how PRC1 and PRC2 are recruited to genes in mammalian cells is unclear. Here we present evidence for an interaction between the transcription factor REST, PRC1, and PRC2 and show that RNF2 and REST co-regulate a number of neuronal genes in human teratocarcinoma cells (NT2-D1). Using NT2-D1 cells as a model of neuronal differentiation, we furthermore showed that retinoic-acid stimulation led to displacement of PRC1 at REST binding sites, reduced H3K27Me3, and increased gene expression. Genome-wide analysis of Polycomb binding in Rest−/− and Eed−/− mouse embryonic stem (mES) cells showed that Rest was required for PRC1 recruitment to a subset of Polycomb regulated neuronal genes. Furthermore, we found that PRC1 can be recruited to Rest binding sites independently of CpG islands and the H3K27Me3 mark. Surprisingly, PRC2 was frequently increased around Rest binding sites located in CpG-rich regions in the Rest−/− mES cells, indicating a more complex interplay where Rest also can limit PRC2 recruitment. Therefore, we propose that Rest has context-dependent functions for PRC1- and PRC2- recruitment, which allows this transcription factor to act both as a recruiter of Polycomb as well as a limiting factor for PRC2 recruitment at CpG islands.


Nature | 2016

Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition.

John Arne Dahl; Inkyung Jung; Håvard Aanes; Gareth D. Greggains; Adeel Manaf; Mads Lerdrup; Guoqiang Li; Samantha Kuan; Bin Li; Ah Young Lee; Sebastian Preissl; Ingunn Jermstad; Mads Haugland Haugen; Rajikala Suganthan; Magnar Bjørås; Klaus Hansen; Knut Tomas Dalen; Peter Fedorcsak; Bing Ren; Arne Klungland

Maternal-to-zygotic transition (MZT) is essential for the formation of a new individual, but is still poorly understood despite recent progress in analysis of gene expression and DNA methylation in early embryogenesis. Dynamic histone modifications may have important roles in MZT, but direct measurements of chromatin states have been hindered by technical difficulties in profiling histone modifications from small quantities of cells. Recent improvements allow for 500 cell-equivalents of chromatin per reaction, but require 10,000 cells for initial steps or require a highly specialized microfluidics device that is not readily available. We developed a micro-scale chromatin immunoprecipitation and sequencing (μChIP–seq) method, which we used to profile genome-wide histone H3 lysine methylation (H3K4me3) and acetylation (H3K27ac) in mouse immature and metaphase II oocytes and in 2-cell and 8-cell embryos. Notably, we show that ~22% of the oocyte genome is associated with broad H3K4me3 domains that are anti-correlated with DNA methylation. The H3K4me3 signal becomes confined to transcriptional-start-site regions in 2-cell embryos, concomitant with the onset of major zygotic genome activation. Active removal of broad H3K4me3 domains by the lysine demethylases KDM5A and KDM5B is required for normal zygotic genome activation and is essential for early embryo development. Our results provide insight into the onset of the developmental program in mouse embryos and demonstrate a role for broad H3K4me3 domains in MZT.


Cell Death & Differentiation | 2004

JNK2 mediates TNF-induced cell death in mouse embryonic fibroblasts via regulation of both caspase and cathepsin protease pathways.

Nikolaj Dietrich; Jacob Thastrup; C Holmberg; Mads Gyrd-Hansen; Nicole Fehrenbacher; Ulrik Lademann; Mads Lerdrup; T Herdegen; Marja Jäättelä; Tuula Kallunki

AbstractRecent studies strongly suggest an active involvement of the c-Jun N-terminal kinase (JNK) signaling pathway in tumor necrosis factor (TNF)-induced apoptosis. The direct evidence for the role of JNK and its isoforms has been missing and the mechanism of how JNK actually could facilitate this process has remained unclear. In this study, we show that Jnk2−/− primary mouse embryonic fibroblasts (pMEFs) exhibit resistance towards TNF-induced apoptosis as compared to corresponding wild-type and Jnk1−/− pMEFs. JNK2-deficient pMEFs could be resensitized to TNF via retroviral transduction of any of the four different JNK2 splicing variants. Jnk2−/− pMEFs displayed deficient and delayed effector caspase activation as well as impaired cytosolic cystein cathepsin activity: processes that both were needed for efficient TNF-induced apoptosis in pMEFs. Our work demonstrates that JNK has a central role in the promotion of TNF-induced apoptosis in pMEFs, and that the JNK2 isoform can regulate both mitochondrial and lysosomal death pathways in these cells.


Journal of Cell Science | 2006

Geldanamycin stimulates internalization of ErbB2 in a proteasome-dependent way

Mads Lerdrup; Anette M. Hommelgaard; Michael V. Grandal; Bo van Deurs

The potent oncoprotein and receptor tyrosine kinase ErbB2 is remarkable because it resists efficient downregulation. However, ErbB2 can be downregulated by the HSP-90 inhibitor geldanamycin, but the underlying cellular mechanisms are uncertain. Apparently, delivery of ErbB2 to lysosomes, cleavage of the ErbB2 kinase domain and proteasomal activity are all processes that are involved. Using a non-invasive confocal microscopical assay allowing quantitative analysis of ErbB2 internalization in cell populations, we show that whereas ErbB2 is resistant to internalization in untreated SK-BR-3 cells, geldanamycin stimulates internalization and subsequent degradation in lysosomes. This process depends on proteasomal activity, which is a regulatory upstream event in ErbB2 internalization rather than the actual mechanism of degradation. ErbB2 can be internalized as a full-length protein, thus cleavage of the ErbB2 kinase domain is not a requirement for geldanamycin-stimulated internalization. Moreover, as shown by FRAP (fluorescence recovery after photobleaching) and electron microscopy, geldanamycin induces an increase in the amount of mobile ErbB2 and a redistribution of ErbB2 in the plasma membrane making the receptor accessible to endocytosis. Cells with most ErbB2 endocytosis also have the highest fraction of mobile ErbB2. It is concluded that geldanamycin stimulates internalization of full-length ErbB2 in a proteasome-dependent manner leading to lysosomal degradation.


Blood | 2013

DNA methylation changes are a late event in acute promyelocytic leukemia and coincide with loss of transcription factor binding

Till Schoofs; Christian Rohde; Katja Hebestreit; Hans-Ulrich Klein; Stefanie Göllner; Isabell Schulze; Mads Lerdrup; Nikolaj Dietrich; Shuchi Agrawal-Singh; Anika Witten; Monika Stoll; Eva Lengfelder; Wolf-Karsten Hofmann; Peter Schlenke; Thomas Büchner; Klaus Hansen; Wolfgang E. Berdel; Frank Rosenbauer; Martin Dugas; Carsten Müller-Tidow

The origin of aberrant DNA methylation in cancer remains largely unknown. In the present study, we elucidated the DNA methylome in primary acute promyelocytic leukemia (APL) and the role of promyelocytic leukemia-retinoic acid receptor α (PML-RARα) in establishing these patterns. Cells from APL patients showed increased genome-wide DNA methylation with higher variability than healthy CD34(+) cells, promyelocytes, and remission BM cells. A core set of differentially methylated regions in APL was identified. Age at diagnosis, Sanz score, and Flt3-mutation status characterized methylation subtypes. Transcription factor-binding sites (eg, the c-myc-binding sites) were associated with low methylation. However, SUZ12- and REST-binding sites identified in embryonic stem cells were preferentially DNA hypermethylated in APL cells. Unexpectedly, PML-RARα-binding sites were also protected from aberrant DNA methylation in APL cells. Consistent with this, myeloid cells from preleukemic PML-RARα knock-in mice did not show altered DNA methylation and the expression of PML-RARα in hematopoietic progenitor cells prevented differentiation without affecting DNA methylation. Treatment of APL blasts with all-trans retinoic acid also did not result in immediate DNA methylation changes. The results of the present study suggest that aberrant DNA methylation is associated with leukemia phenotype but is not required for PML-RARα-mediated initiation of leukemogenesis.


Cell Stem Cell | 2015

β-Catenin Regulates Primitive Streak Induction through Collaborative Interactions with SMAD2/SMAD3 and OCT4

Nina S. Funa; Karen A. Schachter; Mads Lerdrup; Jenny Ekberg; Katja Hess; Nikolaj Dietrich; Christian Honoré; Klaus Hansen; Henrik Semb

Canonical Wnt and Nodal signaling are both required for induction of the primitive streak (PS), which guides organization of the early embryo. The Wnt effector β-catenin is thought to function in these early lineage specification decisions via transcriptional activation of Nodal signaling. Here, we demonstrate a broader role for β-catenin in PS formation by analyzing its genome-wide binding in a human embryonic stem cell model of PS induction. β-catenin occupies regulatory regions in numerous PS and neural crest genes, and direct interactions between β-catenin and the Nodal effectors SMAD2/SMAD3 are required at these regions for PS gene activation. Furthermore, OCT4 binding in proximity to these sites is likewise required for PS induction, suggesting a collaborative interaction between β-catenin and OCT4. Induction of neural crest genes by β-catenin is repressed by SMAD2/SMAD3, ensuring proper lineage specification. This study provides mechanistic insight into how Wnt signaling controls early cell lineage decisions.


Nature Structural & Molecular Biology | 2016

An interactive environment for agile analysis and visualization of ChIP-sequencing data

Mads Lerdrup; Jens Vilstrup Johansen; Shuchi Agrawal-Singh; Klaus Hansen

To empower experimentalists with a means for fast and comprehensive chromatin immunoprecipitation sequencing (ChIP-seq) data analyses, we introduce an integrated computational environment, EaSeq. The software combines the exploratory power of genome browsers with an extensive set of interactive and user-friendly tools for genome-wide abstraction and visualization. It enables experimentalists to easily extract information and generate hypotheses from their own data and public genome-wide datasets. For demonstration purposes, we performed meta-analyses of public Polycomb ChIP-seq data and established a new screening approach to analyze more than 900 datasets from mouse embryonic stem cells for factors potentially associated with Polycomb recruitment. EaSeq, which is freely available and works on a standard personal computer, can substantially increase the throughput of many analysis workflows, facilitate transparency and reproducibility by automatically documenting and organizing analyses, and enable a broader group of scientists to gain insights from ChIP-seq data.

Collaboration


Dive into the Mads Lerdrup's collaboration.

Top Co-Authors

Avatar

Klaus Hansen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bo van Deurs

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juri Rappsilber

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Astrid Monrad

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar

Kristian Helin

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge