Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mafalda Mucciolo is active.

Publication


Featured researches published by Mafalda Mucciolo.


Clinical Genetics | 2012

Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B

Christina Halgren; Susanne Kjaergaard; Mads Bak; C. Hansen; Zahra El-Schich; Cm Anderson; Karen Friis Henriksen; Helle Hjalgrim; Maria Kirchhoff; Emilia K. Bijlsma; Maartje Nielsen; N.S. den Hollander; Cal Ruivenkamp; Bertrand Isidor; C Le Caignec; R Zannolli; Mafalda Mucciolo; Alessandra Renieri; Francesca Mari; B-M Anderlid; Joris Andrieux; A Dieux; Niels Tommerup; Iben Bache

Halgren C, Kjaergaard S, Bak M, Hansen C, El‐Schich Z, Anderson CM, Henriksen KF, Hjalgrim H, Kirchhoff M, Bijlsma EK, Nielsen M, den Hollander NS, Ruivenkamp CAL, Isidor B, Le Caignec C, Zannolli R, Mucciolo M, Renieri A, Mari F, Anderlid B‐M, Andrieux J, Dieux A, Tommerup N, Bache I. Corpus callosum abnormalities, intellectual disability, speech impairment, and autism in patients with haploinsufficiency of ARID1B.


Journal of Medical Genetics | 2015

Bone marrow failure and developmental delay caused by mutations in poly(A)-specific ribonuclease (PARN)

Santhosh Dhanraj; Sethu Madhava Rao Gunja; Adam Deveau; Mikael Nissbeck; Boonchai Boonyawat; Andrew J. Coombs; Alessandra Renieri; Mafalda Mucciolo; Annabella Marozza; Sabrina Buoni; Lesley Turner; Hongbing Li; Ameer Jarrar; Mathura Sabanayagam; Melanie Kirby; Mary Shago; Dalila Pinto; Jason N. Berman; Stephen W. Scherer; Anders Virtanen; Yigal Dror

Background Deadenylation regulates RNA function and fate. Poly(A)-specific ribonuclease (PARN) is a deadenylase that processes mRNAs and non-coding RNA. Little is known about the biological significance of germline mutations in PARN. Methods We identified mutations in PARN in patients with haematological and neurological manifestations. Genomic, biochemical and knockdown experiments in human marrow cells and in zebrafish have been performed to clarify the role of PARN in the human disease. Results We identified large monoallelic deletions in PARN in four patients with developmental delay or mental illness. One patient in particular had a severe neurological phenotype, central hypomyelination and bone marrow failure. This patient had an additional missense mutation on the non-deleted allele and severely reduced PARN protein and deadenylation activity. Cells from this patient had impaired oligoadenylation of specific H/ACA box small nucleolar RNAs. Importantly, PARN-deficient patient cells manifested short telomeres and an aberrant ribosome profile similar to those described in some variants of dyskeratosis congenita. Knocking down PARN in human marrow cells and zebrafish impaired haematopoiesis, providing further evidence for a causal link with the human disease. Conclusions Large monoallelic mutations of PARN can cause developmental/mental illness. Biallelic PARN mutations cause severe bone marrow failure and central hypomyelination.


European Journal of Medical Genetics | 2012

Xq28 duplications including MECP2 in five females: Expanding the phenotype to severe mental retardation

Emilia K. Bijlsma; Amanda L. Collins; Filomena Tiziana Papa; María-Isabel Tejada; Patricia G. Wheeler; E. A. Peeters; Antoinet C.J. Gijsbers; J. M. van de Kamp; Marjolein Kriek; Monique Losekoot; A. J. Broekma; John A. Crolla; Marzia Pollazzon; Mafalda Mucciolo; Eleni Katzaki; Vittoria Disciglio; M. I. Ferreri; Annabella Marozza; Ma Mencarelli; Cinzia Castagnini; Laura Dosa; Francesca Ariani; Francesca Mari; Roberto Canitano; Giuseppe Hayek; M. P. Botella; B. Gener; M. Mínguez; Alessandra Renieri; Claudia Ruivenkamp

Duplications leading to functional disomy of chromosome Xq28, including MECP2 as the critical dosage-sensitive gene, are associated with a distinct clinical phenotype in males, characterized by severe mental retardation, infantile hypotonia, progressive neurologic impairment, recurrent infections, bladder dysfunction, and absent speech. Female patients with Xq duplications including MECP2 are rare. Only recently submicroscopic duplications of this region on Xq28 have been recognized in four females, and a triplication in a fifth, all in combination with random X-chromosome inactivation (XCI). Based on this small series, it was concluded that in females with MECP2 duplication and random XCI, the typical symptoms of affected boys are not present. We present clinical and molecular data on a series of five females with an Xq28 duplication including the MECP2 gene, both isolated and as the result of a translocation, and compare them with the previously reported cases of small duplications in females. The collected data indicate that the associated phenotype in females is distinct from males with similar duplications, but the clinical effects may be as severe as seen in males.


Pediatric Nephrology | 2011

Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2.

Vera Uliana; Elena Marcocci; Mafalda Mucciolo; Ilaria Meloni; Claudia Izzi; Manno C; Mirella Bruttini; Francesca Mari; Francesco Scolari; Alessandra Renieri; Leonardo Salviati

Alport syndrome (ATS) is a nephropathy characterized by the association of progressive hematuric nephritis with ultrastructural changes of the glomerular basement membrane (thinning, thickening, and splitting), sensorineural deafness, and variable ocular abnormalities (anterior lenticonus, macular flecks, and cataracts). The most common mode of transmission is X-linked inheritance, due to COL4A5 mutations. X-linked ATS is rarely associated with diffuse leiomyomatosis (DL), a benign hypertrophy of the visceral smooth muscle in gastrointestinal, respiratory, and female reproductive tracts. The ATS-DL complex is due to deletions that encompass the 5′ ends of the COL4A5 and COL4A6 genes and include the bidirectional promoter. In this paper, we described 3 ATS-DL cases, 2 familial and 1 sporadic bearing a deletion encompassing the 5′-end of both the COL4A5 and COL4A6 genes, as identified by multiplex ligation-dependent probe amplification (MLPA) analysis. The array-CGH technique allowed a better definition of deletion size, confirming that the proximal breakpoint was within COL4A6 intron 2 in 2 cases. Surprisingly, 1 case had a deletion extending proximally beyond exon 3 of COL4A6, as confirmed by qPCR analysis. This is the largest deletion reported to date that has been associated with ATS-DL and this case should lead us to reconsider the mechanisms that might be involved in the development of diffuse leiomyomatosis.


American Journal of Medical Genetics Part A | 2014

Interstitial 22q13 deletions not involving SHANK3 gene: A new contiguous gene syndrome

Vittoria Disciglio; Caterina Lo Rizzo; Maria Antonietta Mencarelli; Mafalda Mucciolo; Annabella Marozza; Chiara Di Marco; Antonio Massarelli; Valentina Canocchi; Margherita Baldassarri; Enea Ndoni; Elisa Frullanti; Sonia Amabile; Britt Marie Anderlid; Kay Metcalfe; Cédric Le Caignec; Albert David; Alan Fryer; Odile Boute; Andrieux Joris; Donatella Greco; Vanna Pecile; Roberta Battini; Antonio Novelli; Marco Fichera; Corrado Romano; Francesca Mari; Alessandra Renieri

Phelan–McDermid syndrome (22q13.3 deletion syndrome) is a contiguous gene disorder resulting from the deletion of the distal long arm of chromosome 22. SHANK3, a gene within the minimal critical region, is a candidate gene for the major neurological features of this syndrome. We report clinical and molecular data from a study of nine patients with overlapping interstitial deletions in 22q13 not involving SHANK3. All of these deletions overlap with the largest, but not with the smallest deletion associated with Phelan–McDermid syndrome. The deletion sizes and breakpoints varied considerably among our patients, with the largest deletion spanning 6.9 Mb and the smallest deletion spanning 2.7 Mb. Eight out of nine patients had a de novo deletion, while in one patient the origin of deletion was unknown. These patients shared clinical features common to Phelan–McDermid syndrome: developmental delay (11/12), speech delay (11/12), hypotonia (9/12), and feeding difficulties (7/12). Moreover, the majority of patients (8/12) exhibited macrocephaly. In the minimal deleted region, we identified two candidate genes, SULT4A1 and PARVB (associated with the PTEN pathway), which could be associated in our cohort with neurological features and macrocephaly/hypotonia, respectively. This study suggests that the haploinsufficiency of genes in the 22q13 region beside SHANK3 contributes to cognitive and speech development, and that these genes are involved in the phenotype associated with the larger Phelan–McDermid syndrome 22q13 deletions. Moreover, because the deletions in our patients do not involve the SHANK3 gene, we posit the existence of a new contiguous gene syndrome proximal to the smallest terminal deletions in the 22q13 region.


Journal of Human Genetics | 2011

Investigation of modifier genes within copy number variations in Rett syndrome

Rosangela Artuso; Filomena Tiziana Papa; Elisa Grillo; Mafalda Mucciolo; Dag H. Yasui; Keith W. Dunaway; Vittoria Disciglio; Maria Antonietta Mencarelli; Marzia Pollazzon; Michele Zappella; Giuseppe Hayek; Francesca Mari; Alessandra Renieri; Janine M. LaSalle; Francesca Ariani

MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether copy number variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by chromatin immunopreceipitation microarray (ChIP–chip) analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target, in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination, and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.


American Journal of Human Genetics | 2015

A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology

Eugenia Migliavacca; Christelle Golzio; Katrin Männik; Ian Blumenthal; Edwin C. Oh; Louise Harewood; Jack A. Kosmicki; Maria Nicla Loviglio; Giuliana Giannuzzi; Loyse Hippolyte; Anne M. Maillard; Ali Abdullah Alfaiz; Robert Witwicki; Gérard Didelot; Ilse van der Werf; Ali A. Alfaiz; Marianna Zazhytska; Jacqueline Chrast; Aurélien Macé; Sven Bergmann; Zoltán Kutalik; Vanessa Siffredi; Flore Zufferey; Danielle Martinet; Frédérique Béna; Anita Rauch; Sonia Bouquillon; Joris Andrieux; Bruno Delobel; Odile Boute

The 16p11.2 600 kb copy-number variants (CNVs) are associated with mirror phenotypes on BMI, head circumference, and brain volume and represent frequent genetic lesions in autism spectrum disorders (ASDs) and schizophrenia. Here we interrogated the transcriptome of individuals carrying reciprocal 16p11.2 CNVs. Transcript perturbations correlated with clinical endophenotypes and were enriched for genes associated with ASDs, abnormalities of head size, and ciliopathies. Ciliary gene expression was also perturbed in orthologous mouse models, raising the possibility that ciliary dysfunction contributes to 16p11.2 pathologies. In support of this hypothesis, we found structural ciliary defects in the CA1 hippocampal region of 16p11.2 duplication mice. Moreover, by using an established zebrafish model, we show genetic interaction between KCTD13, a key driver of the mirrored neuroanatomical phenotypes of the 16p11.2 CNV, and ciliopathy-associated genes. Overexpression of BBS7 rescues head size and neuroanatomical defects of kctd13 morphants, whereas suppression or overexpression of CEP290 rescues phenotypes induced by KCTD13 under- or overexpression, respectively. Our data suggest that dysregulation of ciliopathy genes contributes to the clinical phenotypes of these CNVs.


European Journal of Medical Genetics | 2010

3.2 Mb microdeletion in chromosome 7 bands q22.2–q22.3 associated with overgrowth and delayed bone age

Vera Uliana; Salvatore Grosso; Maddalena Cioni; Francesca Ariani; Filomena Tiziana Papa; Silvia Tamburello; Elisa Rossi; Eleni Katzaki; Mafalda Mucciolo; Annabella Marozza; Marzia Pollazzon; Maria Antonietta Mencarelli; Francesca Mari; Paolo Balestri; Alessandra Renieri

We report a patient with mental retardation, epilepsy, overgrowth, delayed bone age, peculiar facial features, corpus callosum hypoplasia, enlarged cisterna magna and right cerebellar hypoplasia. Array-CGH analysis revealed the presence of a de novo 3.2 Mb interstitial deletion of the long arm of chromosome 7 involving bands q22.2-q22.3. The rearrangement includes 15 genes and encompasses a genomic region that represents a site of frequent loss of heterozygosity in myeloid malignancies. Four genes are implicated in the control of cell cycle: SRPK2, MLL5, RINT1 and LHFPL3. Haploinsufficiency of these genes might therefore be associated with overgrowth and could confer susceptibility to cancers or other tumours, so that attention to this possibility would be appropriate during regular medical review. In conclusion, array-CGH analysis should be performed in patients with overgrowth where the known causes have already been excluded, because some still unclassified overgrowth syndromes may be caused by subtle genomic imbalances.


American Journal of Medical Genetics Part A | 2014

9q31.1q31.3 deletion in two patients with similar clinical features: A newly recognized microdeletion syndrome?

Mafalda Mucciolo; Pamela Magini; Annabella Marozza; Patrizia Mongelli; Ma Mencarelli; Giuseppe Hayek; F. Tavalazzi; Francesca Mari; Marco Seri; Alessandra Renieri; Claudio Graziano

Interstitial deletions of the long arm of chromosome 9 are rare and most patients have been detected by conventional cytogenetic techniques. Disparities in size and localization are large and no consistent region of overlap has been delineated. We report two similar de novo deletions of 6.3 Mb involving the 9q31.1q31.3 region, identified in two monozygotic twins and one unrelated patient through array‐CGH analysis. By cloning the deletion breakpoints, we could show that these deletions are not mediated by segmental duplications. The patients displayed a distinct clinical phenotype characterized by mild intellectual disability, short stature with high body mass index, thick hair, arched eyebrows, flat profile with broad chin and mild prognathism, broad, and slightly overhanging tip of the nose, short neck with cervical gibbus. The twin patients developed a metabolic syndrome (type 2 diabetes, hypercholesterolemia, vascular hypertension) during the third decade of life. Although long‐term follow‐up and collection of additional patients will be needed to obtain a better definition of the phenotype, our findings characterize a previously undescribed syndromic disorder associated with haploinsufficiency of the chromosome 9q31.1q31.3 region.


Hormone Research in Paediatrics | 2018

Next-Generation Sequencing Identifies Different Genetic Defects in 2 Patients with Primary Adrenal Insufficiency and Gonadotropin-Independent Precocious Puberty

Chiara Guzzetti; Carla Bizzarri; Elisa Pisaneschi; Mafalda Mucciolo; Emanuele Bellacchio; Anastasia Ibba; Letizia Casula; Antonio Novelli; Sandro Loche; Marco Cappa

Background: The development of gonadotropin-independent (peripheral) precocious puberty in male children with primary adrenal insufficiency (PAI) is consistent with a defect in the genes encoding for the enzymes involved in steroid hormone biosynthesis. Methods: Two young boys presented with peripheral precocious puberty followed by PAI. In both patients, the analysis of CYP21A2 gene encoding 21-hydroxylase was normal. As a second step, a targeted next-generation sequencing (NGS) was performed in both patients using a customized panel of congenital endocrine disor ders. Results: Case 1 had a new homozygous variant in the CYP11B1 gene (c.1121+5G>A). Mutations of this gene cause congenital adrenal hyperplasia due to 11β-hydroxylase deficiency, an essential enzyme in the cortisol biosynthesis pathway. Case 2 showed a new hemizygous mutation in the NR0B1 gene (c.1091T>G), which encodes for DAX1 (dosage-sensitive sex reversal, adrenal hypoplasia congenita [AHC] and critical region on the X chromosome gene 1). NR0B1 mutations cause X-linked AHC and hypogonadotropic hypogonadism. Pathogenicity prediction software defined both mutations as probably damaging. Conclusions: Peripheral precocious puberty was the atypical presentation of 2 rare genetic diseases. The use of NGS made the characterization of these 2 cases with similar clinical phenotypes caused by 2 different genetic defects possible.

Collaboration


Dive into the Mafalda Mucciolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge