Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magali Floriani is active.

Publication


Featured researches published by Magali Floriani.


Particle and Fibre Toxicology | 2008

Biodistribution and clearance of instilled carbon nanotubes in rat lung

Magali Floriani; Steve Abella-Gallart; Laurent Meunier; Christelle Gamez; Patrice Delalain; Françoise Rogerieux; Jorge Boczkowski; Ghislaine Lacroix

BackgroundConstituted only by carbon atoms, CNT are hydrophobic and hardly detectable in biological tissues. These properties make biokinetics and toxicology studies more complex.MethodsWe propose here a method to investigate the biopersistence of CNT in organism, based on detection of nickel, a metal present in the MWCNT we investigated.Results and conclusionOur results in rats that received MWCNT by intratracheal instillation, reveal that MWCNT can be eliminated and do not significantly cross the pulmonary barrier but are still present in lungs 6 months after a unique instillation. MWCNT structure was also showed to be chemically modified and cleaved in the lung. These results provide the first data of CNT biopersistence and clearance at 6 months after respiratory administration.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2011

Developmental energetics of zebrafish, Danio rerio

Starrlight Augustine; Béatrice Gagnaire; Magali Floriani; Christelle Adam-Guillermin; S.A.L.M. Kooijman

Using zebrafish (Danio rerio) as a case study, we show that the maturity concept of Dynamic Energy Budget (DEB) theory is a useful metric for developmental state. Maturity does not depend on food or temperature contrary to age and to some extent length. We compile the maturity levels for each developmental milestone recorded in staging atlases. The analysis of feeding, growth, reproduction and aging patterns throughout the embryo, juvenile and adult life stages are well-captured by a simple extension of the standard DEB model and reveals that embryo development is slow relative to adults. A threefold acceleration of development occurs during the larval period. Moreover we demonstrate that growth and reproduction depend on food in predictable ways and their simultaneous observation is necessary to estimate parameters. We used data on diverse aspects of the energy budget simultaneously for parameter estimation using the covariation method. The lowest mean food intake level to initiate reproduction was found to be as high as 0.6 times the maximum level. The digestion efficiency for Tetramin™ was around 0.5, growth efficiency was just 0.7 and the value for the allocation fraction to soma (0.44) was close to the one that maximizes ultimate reproduction.


Particle and Fibre Toxicology | 2014

Low-solubility particles and a Trojan-horse type mechanism of toxicity: the case of cobalt oxide on human lung cells

Richard Ortega; Carole Bresson; Carine Darolles; Céline Gautier; Stéphane Roudeau; Laura Perrin; Myriam Janin; Magali Floriani; Valérie Aloin; Asuncion Carmona; Véronique Malard

BackgroundThe mechanisms of toxicity of metal oxide particles towards lung cells are far from being understood. In particular, the relative contribution of intracellular particulate versus solubilized fractions is rarely considered as it is very challenging to assess, especially for low-solubility particles such as cobalt oxide (Co3O4).MethodsThis study was possible owing to two highly sensitive, independent, analytical techniques, based on single-cell analysis, using ion beam microanalysis, and on bulk analysis of cell lysates, using mass spectrometry.ResultsOur study shows that cobalt oxide particles, of very low solubility in the culture medium, are readily incorporated by BEAS-2B human lung cells through endocytosis via the clathrin-dependent pathway. They are partially solubilized at low pH within lysosomes, leading to cobalt ions release. Solubilized cobalt was detected within the cytoplasm and the nucleus. As expected from these low-solubility particles, the intracellular solubilized cobalt content is small compared with the intracellular particulate cobalt content, in the parts-per-thousand range or below. However, we were able to demonstrate that this minute fraction of intracellular solubilized cobalt is responsible for the overall toxicity.ConclusionsCobalt oxide particles are readily internalized by pulmonary cells via the endo-lysosomal pathway and can lead, through a Trojan-horse mechanism, to intracellular release of toxic metal ions over long periods of time, involving specific toxicity.


Aquatic Toxicology | 2010

Mitochondrial energetic metabolism perturbations in skeletal muscles and brain of zebrafish (Danio rerio) exposed to low concentrations of waterborne uranium.

Adélaïde Lerebours; Christelle Adam-Guillermin; Daniel Brèthes; Sandrine Frelon; Magali Floriani; Virginie Camilleri; Jacqueline Garnier-Laplace; Jean-Paul Bourdineaud

Anthropogenic release of uranium (U), originating from the nuclear fuel cycle or military activities, may considerably increase U concentrations in terrestrial and aquatic ecosystems above the naturally occurring background levels found throughout the environment. With a projected increase in the world-wide use of nuclear power, it is important to improve our understanding of the possible effects of this metal on the aquatic fauna at concentrations commensurate with the provisional drinking water guideline value of the World Health Organization (15 μg U/L). The present study has examined the mitochondrial function in brain and skeletal muscles of the zebrafish, Danio rerio, exposed to 30 and 100 μg/L of waterborne U for 10 and 28 days. At the lower concentration, the basal mitochondrial respiration rate was increased in brain at day 10 and in muscles at day 28. This is due to an increase of the inner mitochondrial membrane permeability, resulting in a decrease of the respiratory control ratio. In addition, levels of cytochrome c oxidase subunit IV (COX-IV) increased in brain at day 10, and those of COX-I increased in muscles at day 28. Histological analyses performed by transmission electron microscopy revealed an alteration of myofibrils and a dilatation of endomysium in muscle cells. These effects were largest at the lowest concentration, following 28 days of exposure.


Aquatic Toxicology | 2012

Genotoxicity of uranium contamination in embryonic zebrafish cells.

Sandrine Pereira; Virginie Camilleri; Magali Floriani; Isabelle Cavalie; Jacqueline Garnier-Laplace; Christelle Adam-Guillermin

Uranium is a metal used in the nuclear industry and for military applications. Studies on mammals have shown that uranium is genotoxic. However the molecular and cellular mechanisms responsible for the genotoxicity of uranium are poorly known for other types of vertebrates such as fish. Since unrepaired DNA double-strand breaks (DSBs) are considered to be key lesions in cell lethality, the activity of one of the major DSB-repair pathways, i.e. non-homologous end-joining (NHEJ), has been evaluated in embryonic zebrafish cells (ZF4) exposed to uranium. Genotoxicity of uranium in ZF4 cells was further assessed by comet and micronucleus assays. Exposure to uranium results in the production of DSBs a few hours after incubation. These breaks trigger the phosphorylation of H2AX proteins. We showed that the DNA-PK kinase activity, essential for NHEJ, is altered by the presence of uranium. The presence of uranium in cells disturbs but does not inhibit the repair rate of DSBs. Such a result suggests an impact of uranium upon the reparability of DSBs and the potential activation of alternative DSBs repair pathway leading to the propagation of possible misrepaired DSBs. In parallel, we performed a transmission electron microscopy analysis of cells exposed to uranium and were able to localize internalized uranium using an Energy Dispersive X-ray microanalyser. We observed the formation of precipitates in lysosome-like vesicles for 250 μM of uranium in the medium. The appearance of these precipitates is concomitant with the decrease of the number of DSBs per cell. This process might be a part of a defence system whose role in counteracting cytotoxicity calls for further dedicated research.


PLOS ONE | 2015

Biodistribution and Clearance of TiO2 Nanoparticles in Rats after Intravenous Injection

Rémy Beaudouin; Nawel Jbilou; Magali Floriani; Alexandre R.R. Péry; Françoise Rogerieux; Ghislaine Lacroix

Titanium dioxide (TiO2) nanoparticles are used in many applications. Due to their small size, easy body penetration and toxicological adverse effects have been suspected. Numerous studies have tried to characterize TiO2 translocation after oral, dermal or respiratory exposure. In this study, we focused on TiO2 nanoparticle biodistribution, clearance and toxicological effects after intravenous injection, considering TiO2 translocation in the blood occurs. Using ICP-OES, transmission electron microscopy, and histological methods, we found TiO2 accumulation in liver, lungs and spleen. We estimated TiO2 nanoparticles’ half life in the body to about 10 days. Clinical biomarkers were also quantified for 56 days to identify potential toxicological impact on lungs, blood, liver, spleen and kidneys. Results showed absence of toxicological effects after TiO2 intravenous injection at concentrations of 7.7 to 9.4 mg/kg.


Environmental Science & Technology | 2011

Biology-Based Modeling To Analyze Uranium Toxicity Data on Daphnia magna in a Multigeneration Study

Sandrine Massarin; Rémy Beaudouin; Florence Anna Zeman; Magali Floriani; Rodolphe Gilbin; Frédéric Alonzo; Alexandre R.R. Péry

Recent studies have investigated chronic toxicity of waterborne depleted uranium on the life cycle and physiology of Daphnia magna. In particular, a reduction in food assimilation was observed. Our aims here were to examine whether this reduction could fully account for observed effects on both growth and reproduction, for three successive generations, and to investigate through microscope analyses whether this reduction resulted from direct damage to the intestinal epithelium. We analyzed data obtained by exposing Daphnia magna to uranium over three successive generations. We used energy-based models, which are both able to fit simultaneously growth and reproduction and are biologically relevant. Two possible modes of action were compared - decrease in food assimilation rate and increase in maintenance costs. In our models, effects were related either to internal concentration or to exposure concentration. The model that fitted the data best represented a decrease in food assimilation related to exposure concentration. Furthermore, observations of consequent histological damage to the intestinal epithelium, together with uranium precipitates in the epithelial cells, supported the assumption that uranium has direct effects on the digestive tract. We were able to model the data in all generations and showed that sensitivity increased from one generation to the next, in particular through a significant increase of the intensity of effect, once the threshold for appearance of effects was exceeded.


Ecotoxicology and Environmental Safety | 2011

Effects of uranium uptake on transcriptional responses, histological structures and survival rate of the crayfish Procambarus clarkii

Simone Al Kaddissi; Alexia Legeay; Patrice Gonzalez; Magali Floriani; Virginie Camilleri; Rodolphe Gilbin; Olivier Simon

This work aims to investigate the accumulation levels and effects (transcriptional responses, histopathology and survival rate) associated with a wide range of dissolved uranium (U) concentrations (0, 0.03, 0.6, 4 and 8 mg/L of U) on adult male crayfish Procambarus clarkii during 4 (T4) and 10 (T10) days of exposure. The follow-up of the crayfish mortality showed that P. clarkii was highly resistant to U. Increasing waterborne U concentrations led to increasing bioaccumulation in key crayfish organs and increasing histological damages. U distribution in tissues was also evaluated using transmission electron microscopy and showed the presence of a detoxified form of U in the gills epithelium in the shape of flakes. Expression levels of mitochondrial genes (cox1, atp6 and 12S gene) and genes involved in oxidative stress (sod(Mn) and mt) were examined together with the housekeeping gene 18S. atp6 and mt genes of P. clarkii were cloned and sequenced before analysis. Significant correlations were observed between U bioaccumulation and the down-regulation of both cox1 and sod(Mn) genes. This work provides a first U toxicogenomic and histopathological pattern of P. clarkii, identify U biomarkers and associate gene expression endpoints to accumulation levels. It also provides new insights into the mechanisms involved in U stress.


Environmental Science & Technology | 2010

Sublethal effects of waterborne uranium exposures on the zebrafish brain:transcriptional responses and alterations of the olfactory bulb ultrastructure

Adélaïde Lerebours; Jean-Paul Bourdineaud; Karlijn van der Ven; Tine Vandenbrouck; Patrice Gonzalez; Virginie Camilleri; Magali Floriani; Jacqueline Garnier-Laplace; Christelle Adam-Guillermin

The toxic action modes of uranium (U) in fish are still scarcely known. U is known to modify the acetylcholinesterase activity in the fish brain. To gain further insight into U neurotoxicity in fish, we examined transcriptional responses in the brain of the zebrafish, Danio rerio, exposed to 15 microg L(-1) and 100 microg L(-1) of waterborne U for 3 and 10 days. In parallel, an ultrastructure analysis of the neuropil of the olfactory bulb, an area in the brain of fish sensitive to metal contamination, was performed after 10 days of U exposure. This combined transcriptomic and histological study is the first report performed in the brain and specifically the olfactory bulb of fish exposed to U. We found that 56 transcripts responded to the metal exposure, and the anatomical structure of the olfactory bulb was damaged. The greatest gene response occurred at the lower U concentration and the numbers of responding genes common to any two U exposures were much smaller than those unique to each exposure. These data showed that the intensity of gene response may not correlate positively with toxicant concentrations according to our experimental design. Instead, different patterns of gene expression are expected for each exposure. Gene responses were categorized into eight functional classes, and the transcriptional responses of genes involved in the olfactory system were significantly affected. Collectively, the data suggest that genes in the olfactory region may be ecologically relevant and sensitive transcriptional biomarkers of U waterborne exposure.


Aquatic Toxicology | 2010

Ultrastructural effects on gill, muscle, and gonadal tissues induced in zebrafish (Danio rerio) by a waterborne uranium exposure

Sabrina Barillet; Valérie Larno; Magali Floriani; Alain Devaux; Christelle Adam-Guillermin

Experiments on adult zebrafish (Danio rerio) were conducted to assess histopathological effects induced on gill, muscle, and gonadal tissues after waterborne uranium exposure. Although histopathology is often employed as a tool for the detection and assessment of xenobiotic-mediated effects in aquatic organisms, few studies have been dedicated to the investigation of histopathological consequences of uranium exposure in fish. Results showed that gill tissue architecture was markedly disrupted. Major symptoms were alterations of the secondary lamellae epithelium (from extensive oedema to desquamation), hyperplasia of chloride cells, and breakdown of the pillar cell system. Muscle histology was also affected. Degeneration and disorganization of myofibrillar sarcomeric pattern as well as abnormal localization of mitochondria within muscle and altered endomysial sheaths were observed. Morphological alterations of spermatozoa within the gonadal tissue were also noticed. This study demonstrated that uranium exposure induced a variety of histological impairments in fish, supporting environmental concerns when uranium contaminates aquatic systems.

Collaboration


Dive into the Magali Floriani's collaboration.

Top Co-Authors

Avatar

Christelle Adam-Guillermin

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Virginie Camilleri

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Isabelle Cavalie

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Olivier Simon

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Garnier-Laplace

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Rodolphe Gilbin

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Béatrice Gagnaire

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Sandrine Frelon

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge