Magatte Ndiaye
Cheikh Anta Diop University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Magatte Ndiaye.
American Journal of Tropical Medicine and Hygiene | 2012
Magatte Ndiaye; Babacar Faye; Roger Tine; Jean Louis Ndiaye; Aminata Lo; Annie Abiola; Yémou Dieng; Daouda Ndiaye; Rachel Hallett; Michael Alifrangis; Oumar Gaye
As a result of widespread antimalarial drug resistance, all African countries with endemic malaria have, in recent years, changed their malaria treatment policy. In Senegal, the health authorities changed from chloroquine (CQ) to a combination of sulfadoxine–pyrimethamine (SP) plus amodiaquine (AQ) in 2003. Since 2006, the artemisinin combination therapies (ACTs) artemether–lumefantrine (AL) and artesunate plus amodiaquine (AS/AQ) were adopted for uncomplicated malaria treatment. After several years of CQ withdrawal, the current study wished to determine the level of CQ resistance at the molecular level in selected sites in Senegal, because the scientific community is interested in using CQ again. Finger prick blood samples were collected from Plasmodium falciparum-positive children below the age of 10 years (N = 474) during cross-sectional surveys conducted in two study sites in Senegal with different malaria transmission levels. One site is in central Senegal, and the other site is in the southern part of the country. All samples were analyzed for single nucleotide polymorphisms (SNPs) in the P. falciparum CQ resistance transporter gene (Pfcrt; codons 72–76) using polymerase chain reaction (PCR) sequence-specific oligonucleotide probe (SSOP) enzyme-linked immunosorbent assay (ELISA) and real-time PCR methods. In total, the 72- to 76-codon region of Pfcrt was amplified in 449 blood samples (94.7%; 285 and 164 samples from the central and southern sites of Senegal, respectively). In both study areas, the prevalence of the Pfcrt wild-type single CVMNK haplotype was very high; in central Senegal, the prevalence was 70.5% in 2009 and 74.8% in 2010, and in southern Senegal, the prevalence was 65.4% in 2010 and 71.0% in 2011. Comparing data with older studies in Senegal, a sharp decline in the mutant type Pfcrt prevalence is evident: from 65%, 64%, and 59.5% in samples collected from various sites in 2000, 2001, and 2004 to approximately 30% in our study. A similar decrease in mutant type prevalence is noted in other neighboring countries. With the continued development of increased CQ susceptibility in many African countries, it may be possible to reintroduce CQ in the near future in a drug combination; it could possibly be given to non-vulnerable groups, but it demands close monitoring of possible reemergence of CQ resistance development.
Malaria Journal | 2011
Roger Tine; Babacar Faye; Cheikh T Ndour; Jean Louis Ndiaye; Magatte Ndiaye; Charlemagne Bassene; Pascal Magnussen; Ib C. Bygbjerg; Khadim Sylla; Jacques D Ndour; Oumar Gaye
BackgroundCurrent malaria control strategies recommend (i) early case detection using rapid diagnostic tests (RDT) and treatment with artemisinin combination therapy (ACT), (ii) pre-referral rectal artesunate, (iii) intermittent preventive treatment and (iv) impregnated bed nets. However, these individual malaria control interventions provide only partial protection in most epidemiological situations. Therefore, there is a need to investigate the potential benefits of integrating several malaria interventions to reduce malaria prevalence and morbidity.MethodsA randomized controlled trial was carried out to assess the impact of combining seasonal intermittent preventive treatment in children (IPTc) with home-based management of malaria (HMM) by community health workers (CHWs) in Senegal. Eight CHWs in eight villages covered by the Bonconto health post, (South Eastern part of Senegal) were trained to diagnose malaria using RDT, provide prompt treatment with artemether-lumefantrine for uncomplicated malaria cases and pre-referral rectal artesunate for complicated malaria occurring in children under 10 years. Four CHWs were randomized to also administer monthly IPTc as single dose of sulphadoxine-pyrimethamine (SP) plus three doses of amodiaquine (AQ) in the malaria transmission season, October and November 2010. Primary end point was incidence of single episode of malaria attacks over 8 weeks of follow up. Secondary end points included prevalence of malaria parasitaemia, and prevalence of anaemia at the end of the transmission season. Primary analysis was by intention to treat. The study protocol was approved by the Senegalese National Ethical Committee (approval 0027/MSP/DS/CNRS, 18/03/2010).ResultsA total of 1,000 children were enrolled. The incidence of malaria episodes was 7.1/100 child months at risk [95% CI (3.7-13.7)] in communities with IPTc + HMM compared to 35.6/100 child months at risk [95% CI (26.7-47.4)] in communities with only HMM (aOR = 0.20; 95% CI 0.09-0.41; p = 0.04). At the end of the transmission season, malaria parasitaemia prevalence was lower in communities with IPTc + HMM (2.05% versus 4.6% p = 0.03). Adjusted for age groups, sex, Plasmodium falciparum carriage and prevalence of malnutrition, IPTc + HMM showed a significant protective effect against anaemia (aOR = 0.59; 95% CI 0.42-0.82; p = 0.02).ConclusionCombining IPTc and HMM can provide significant additional benefit in preventing clinical episodes of malaria as well as anaemia among children in Senegal.
BMC Research Notes | 2012
Roger Tine; Magatte Ndiaye; Helle H Hansson; Cheikh T Ndour; Babacar Faye; Michael Alifrangis; Khadime Sylla; Jean Louis Ndiaye; Pascal Magnussen; Ib C. Bygbjerg; Oumar Gaye
BackgroundMalaria and anaemia (Haemoglobin <11 g/dl) remain frequent in tropical regions and are closely associated. Although anaemia aetiologies are known to be multi-factorial, most studies in malaria endemic areas have been confined to analysis of possible associations between anaemia and individual factors such as malaria. A case control study involving children aged from 1 to 10 years was conducted to assess some assumed contributors to anaemia in the area of Bonconto Health post in Senegal.MethodsStudy participants were randomly selected from a list of children who participated in a survey in December 2010. Children aged from 1 to 10 years with haemoglobin level below 11 g/dl represented cases (anaemic children). Control participants were eligible if of same age group and their haemoglobin level was >= 11 g/dl. For each participant, a physical examination was done and anthropometric data collected prior to a biological assessment which included: malaria parasitaemia infection, intestinal worm carriage, G6PD deficiency, sickle cell disorders, and alpha-talassaemia.ResultsThree hundred and fifty two children < 10 years of age were enrolled (176 case and 176 controls). In a logistic regression analysis, anaemia was significantly associated with malaria parasitaemia (aOR=5.23, 95%CI[1.1-28.48]), sickle cell disorders (aOR=2.89, 95%CI[1,32-6.34]), alpha-thalassemia (aOR=1.82, 95%CI[1.2-3.35]), stunting (aOR=3.37, 95%CI[1.93-5.88], age ranged from 2 to 4 years (aOR=0.13, 95%CI[0.05-0.31]) and age > 5 years (aOR=0.03, 95%CI[0.01-0.08]). Stratified by age group, anaemia was significantly associated with stunting in children less than 5 years (aOR=3.1 95%CI[1.4 – 6.8]), with, sickle cell disorders (aOR=3.5 95%CI [1.4 – 9.0]), alpha-thalassemia (or=2.4 95%CI[1.1–5.3]) and stunting (aOR=3.6 95%CI [1.6–8.2]) for children above 5 years. No association was found between G6PD deficiency, intestinal worm carriage and children’s gender.ConclusionMalaria parasitaemia, stunting and haemoglobin genetic disorders represented the major causes of anaemia among study participants. Anaemia control in this area could be achieved by developing integrated interventions targeting both malaria and malnutrition.
PLOS Medicine | 2016
Badara Cisse; El Hadj Ba; Cheikh Sokhna; Jean Louis Ndiaye; Jules F. Gomis; Yankhoba Dial; Catherine Pitt; M. Ndiaye; Matthew Cairns; Ernest Faye; Magatte Ndiaye; Aminata Lo; Roger Tine; Sylvain Landry Faye; Babacar Faye; Ousmane Sy; Lansana Konate; Ekoue Kouevijdin; Clare Flach; Ousmane Faye; Jean-François Trape; Colin J. Sutherland; Fatou Ba Fall; Pape M. Thior; Oumar Faye; Brian Greenwood; Oumar Gaye; Paul Milligan
Background Seasonal Malaria Chemoprevention (SMC) with sulfadoxine-pyrimethamine (SP) plus amodiaquine (AQ), given each month during the transmission season, is recommended for children living in areas of the Sahel where malaria transmission is highly seasonal. The recommendation for SMC is currently limited to children under five years of age, but, in many areas of seasonal transmission, the burden in older children may justify extending this age limit. This study was done to determine the effectiveness of SMC in Senegalese children up to ten years of age. Methods and Findings SMC was introduced into three districts over three years in central Senegal using a stepped-wedge cluster-randomised design. A census of the population was undertaken and a surveillance system was established to record all deaths and to record all cases of malaria seen at health facilities. A pharmacovigilance system was put in place to detect adverse drug reactions. Fifty-four health posts were randomised. Nine started implementation of SMC in 2008, 18 in 2009, and a further 18 in 2010, with 9 remaining as controls. In the first year of implementation, SMC was delivered to children aged 3–59 months; the age range was then extended for the latter two years of the study to include children up to 10 years of age. Cluster sample surveys at the end of each transmission season were done to measure coverage of SMC and the prevalence of parasitaemia and anaemia, to monitor molecular markers of drug resistance, and to measure insecticide-treated net (ITN) use. Entomological monitoring and assessment of costs of delivery in each health post and of community attitudes to SMC were also undertaken. About 780,000 treatments were administered over three years. Coverage exceeded 80% each month. Mortality, the primary endpoint, was similar in SMC and control areas (4.6 and 4.5 per 1000 respectively in children under 5 years and 1.3 and 1.2 per 1000 in children 5-9 years of age; the overall mortality rate ratio [SMC: no SMC] was 0.90, 95% CI 0.68–1.2, p = 0.496). A reduction of 60% (95% CI 54%–64%, p < 0.001) in the incidence of malaria cases confirmed by a rapid diagnostic test (RDT) and a reduction of 69% (95% CI 65%–72%, p < 0.001) in the number of treatments for malaria (confirmed and unconfirmed) was observed in children. In areas where SMC was implemented, incidence of confirmed malaria in adults and in children too old to receive SMC was reduced by 26% (95% CI 18%–33%, p < 0.001) and the total number of treatments for malaria (confirmed and unconfirmed) in these older age groups was reduced by 29% (95% CI 21%–35%, p < 0.001). One hundred and twenty-three children were admitted to hospital with a diagnosis of severe malaria, with 64 in control areas and 59 in SMC areas, showing a reduction in the incidence rate of severe disease of 45% (95% CI 5%–68%, p = 0.031). Estimates of the reduction in the prevalence of parasitaemia at the end of the transmission season in SMC areas were 68% (95% CI 35%–85%) p = 0.002 in 2008, 84% (95% CI 58%–94%, p < 0.001) in 2009, and 30% (95% CI -130%–79%, p = 0.56) in 2010. SMC was well tolerated with no serious adverse reactions attributable to SMC drugs. Vomiting was the most commonly reported mild adverse event but was reported in less than 1% of treatments. The average cost of delivery was US
BMC Infectious Diseases | 2013
Khadime Sylla; Annie Abiola; R. Tine; Babacar Faye; Doudou Sow; Jean Louis Ndiaye; Magatte Ndiaye; Aminata Colé Lo; Kuaku Folly; Léon Amath Ndiaye; Oumar Gaye
0.50 per child per month, but varied widely depending on the size of the health post. Limitations included the low rate of mortality, which limited our ability to detect an effect on this endpoint. Conclusions SMC substantially reduced the incidence of outpatient cases of malaria and of severe malaria in children, but no difference in all-cause mortality was observed. Introduction of SMC was associated with an overall reduction in malaria incidence in untreated age groups. In many areas of Africa with seasonal malaria, there is a substantial burden in older children that could be prevented by SMC. SMC in older children is well tolerated and effective and can contribute to reducing malaria transmission. Trial Registration ClinicalTrials.gov NCT00712374
Malaria Journal | 2014
Mohamed Salem Ould Ahmedou Salem; Magatte Ndiaye; Mohamed Ouldabdallahi; Khadijetou Mint Lekweiry; Hervé Bogreau; Lassana Konate; Babacar Faye; Oumar Gaye; Ousmane Faye; Ali Ould Mohamed Salem Boukhary
BackgroundMalaria remains a major public health problem in developing countries. Then in these countries prompt access to effective antimalarial treatment such as Artemisinin based-Combination Therapies (ACT) proves to be an essential tool for controlling the disease. In Senegal, since 2006 a nationwide scaling up program of ACT is being implemented. In this context it has become relevant to monitor ACT efficacy and provide recommendations for the Senegalese national malaria control program.MethodsAn open randomized trial was conducted during two malaria transmission seasons (2011 and 2012) to assess the efficacy and safety of three combinations: dihydro-artemisinin-piperaquine (DHAPQ), artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ). The primary end point of the study was represented by a PCR adjusted adequate clinical and parasitological response (ACPR) at day 28. Secondary end points included: (i) a ACPR at days 35 and 42, (ii) a parasite and fever clearance time, (iii) ACTs safety and tolerability. The 2003 WHO’s protocol for antimalarial drug evaluation was used to assess each outcome.ResultsOverall, 534 patients were randomized selected to receive, either ASAQ (n = 180), AL (n = 178) or DHAPQ (n = 176). The PCR adjusted ACPR at day 28 was 99.41% for the group ASAQ, while that was 100% in the AL and DHAPQ groups (p = 0.37). The therapeutic efficacy was evaluated at 99.37% in the ASAQ arm versus 100% in AL and DHAPQ arm at day 35 (p = 0.37). At day 42, the ACPR was 99.27% in the ASAQ group versus 100% for both AL and DHAPQ groups, (p = 0.36). No serious adverse event was noted during the study period. Also a similar safety profile was noted in the 3 study groups.ConclusionIn the context of scaling up of ACTs in Senegal, ASAQ, AL and DHAPQ are highly effective and safe antimalarial drugs. However, it’s remains important to continue to monitor their efficacy.Trial registrationPACTR 201305000552290.
Transactions of The Royal Society of Tropical Medicine and Hygiene | 2014
Roger Tine; Cheikh T Ndour; Babacar Faye; Matthew Cairns; Khadime Sylla; Magatte Ndiaye; Jean Louis Ndiaye; Doudou Sow; Badara Cisse; Pascal Magnussen; Ib C. Bygbjerg; Oumar Gaye
BackgroundThe genetic diversity of Plasmodium falciparum has been extensively studied in various parts of the world. However, limited data are available from Mauritania. The present study examined and compared the genetic diversity of P. falciparum isolates in Mauritania.MethodsPlasmodium falciparum isolates blood samples were collected from 113 patients attending health facilities in Nouakchott and Hodh El Gharbi regions. K1, Mad20 and RO33 allelic family of msp-1 gene were determined by nested PCR amplification.ResultsK1 family was the predominant allelic type carried alone or in association with Ro33 and Mad20 types (90%; 102/113). Out of the 113 P. falciparum samples, 93(82.3%) harboured more than one parasite genotype. The overall multiplicity of infection was 3.2 genotypes per infection. There was no significant correlation between multiplicity of infection and age of patients. A significant increase of multiplicity of infection was correlated with parasite densities.ConclusionsThe polymorphism of P. falciparum populations from Mauritania was high. Infection with multiple P. falciparum clones was observed, as well as a high multiplicity of infection reflecting both the high endemicity level and malaria transmission in Mauritania.
Malaria Journal | 2012
Roger Tine; Babacar Faye; Khadime Sylla; Jean Louis Ndiaye; Magatte Ndiaye; Doudou Sow; Aminata C Lo; Annie Abiola; Mamadou C Ba; Oumar Gaye
BACKGROUND Home-based management of malaria (HMM) may improve access to diagnostic testing and treatment with artemisinin combination therapy (ACT). In the Sahel region, seasonal malaria chemoprevention (SMC) is now recommended for the prevention of malaria in children. It is likely that combinations of antimalarial interventions can reduce the malaria burden. This study assessed the feasibility, effectiveness and safety of combining SMC and HMM delivered by community health workers (CHWs). METHODS A cluster-randomised trial was carried out during two transmission seasons in eight villages located in the south-eastern part of Senegal. Intervention communities received HMM+SMC while control communities received HMM. Primary end point was the incidence of malaria attacks during the follow up period. Secondary end points included: malaria diagnostic accuracy; access to ACT treatment; SMC coverage; safety and drug tolerability. RESULTS The adjusted rate ratio for incidence of malaria attacks in intervention and control communities was 0.15, indicating a protective effect of HMM+SMC of 85% (95% CI: 39.9-96.3%, p=0.01). Access to ACT treatment was 96.4% while SMC coverage represented 97.3% (95% CI: 91.3-100%) in 2010, and 88.8% (95% CI: 84.2-93.6%) in 2011. No serious adverse events were recorded. CONCLUSION It seems feasible and safe to combine SMC with HMM intervention, while achieving high coverage and effectiveness of both SMC and HMM. TRIAL REGISTRATION (www.pactr.org) PACTR201305000551876.
American Journal of Tropical Medicine and Hygiene | 2011
Issiaka Soulama; Jude D. Bigoga; Magatte Ndiaye; Edith C. Bougouma; Josephine Quagraine; Prisca N. Casimiro; Timothy T. Stedman; Sodiomon B. Sirima
BackgroundPrompt treatment of malaria attacks with arteminisin-based combination therapy (ACT) is an essential tool for malaria control. A new co-blister tablet of artesunate-mefloquine (AM) with 25 mg/kg mefloquine has been developed for the management of uncomplicated malaria attacks. This non-inferiority randomized trial, was conducted to evaluate the efficacy and safety of the new formulation of AM in comparison to artemether-lumefantrine (AL) for the treatment of acute uncomplicated Plasmodium falciparum malaria in adults in Senegal.MethodsThe study was carried out from September to December 2010 in two health centres in Senegal. The study end points included (i) PCR corrected adequate clinical and parasitological response (ACPR) at day 28, (ii) ACPR at days 42 and 63, (iii) parasites and fever clearance time, (iv) incidence of adverse events and patients biological profile at day 7 using the WHO 2003 protocol for anti-malarial drug evaluation.ResultsOverall, 310 patients were randomized to receive either AM (n = 157) or AL (n = 153). PCR corrected ACPR at day 28 was at 95.5% in the AM arm while that in the AL arm was at 96.7% (p = 0.83). Therapeutic efficacy was at 98.5% in the AM arm versus 98.2% in the AL group at day 42 (p = 1). At day 63, ACPR in the AM and AL arms was at 98.2% and 97.7%, respectively (p = 0.32). The two treatments were well tolerated with similar biological profile at day 7. However, dizziness was more frequent in the AM arm.ConclusionArtesunate-mefloquine (25 mg/Kg mefloquine) is efficacious and well-tolerated for the treatment of uncomplicated P. falciparum malaria in adult patients.
PLOS ONE | 2016
Victorine Mensah; Aly Gueye; Magatte Ndiaye; Nick J. Edwards; Danny Wright; Nicholas A. Anagnostou; Massamba Syll; Amy Ndaw; Annie Abiola; Carly M. Bliss; Jules-Francois Gomis; Ines Petersen; Caroline Ogwang; Tandakha Ndiaye Dieye; Nicola K. Viebig; Alison M. Lawrie; Rachel Roberts; Alfredo Nicosia; Babacar Faye; Oumar Gaye; Odile Leroy; Egeruan B. Imoukhuede; Katie Ewer; Philip Bejon; Adrian V. S. Hill; Badara Cisse
The malaria vaccine candidate antigens erythrocyte binding antigen 175 (EBA-175), merozoite surface protein 3 (MSP-3), and apical membrane antigen (AMA-1) from Plasmodium falciparum isolates from countries in central and west Africa were assessed for allelic diversity. Samples were collected on filter paper from 600 P. falciparum-infected symptomatic patients in Cameroon, Republic of Congo, Burkina Faso, Ghana, and Senegal and screened for class-specific amplification fragments. Genetic diversity, assessed by mean heterozygosity, was comparable among countries. We detected a clinical increase in eba 175 F-allele frequency from west to east across the study region. No statistical difference in msp-3 allele distribution between countries was observed. The ama-1 3D7 alleles were present at a lower frequency in central Africa than in West Africa. We also detected little to no genetic differentiation among sampling locations. This finding indicates that, at least at the level of resolution offered by restriction fragment length polymorphism analysis, these antigens showed remarkable genetic homogeneity throughout the region sampled, perhaps caused by balancing selection to maintain a diverse array of antigen haplotyes.