Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magnus Alm Rosenblad is active.

Publication


Featured researches published by Magnus Alm Rosenblad.


Nucleic Acids Research | 2005

Identification and analysis of ribonuclease P and MRP RNA in a broad range of eukaryotes.

Paul Piccinelli; Magnus Alm Rosenblad; Tore Samuelsson

RNases P and MRP are ribonucleoprotein complexes involved in tRNA and rRNA processing, respectively. The RNA subunits of these two enzymes are structurally related to each other and play an essential role in the enzymatic reaction. Both of the RNAs have a highly conserved helical region, P4, which is important in the catalytic reaction. We have used a bioinformatics approach based on conserved elements to computationally analyze available genomic sequences of eukaryotic organisms and have identified a large number of novel nuclear RNase P and MRP RNA genes. For MRP RNA for instance, this investigation increases the number of known sequences by a factor of three. We present secondary structure models of many of the predicted RNAs. Although all sequences are able to fold into the consensus secondary structure of P and MRP RNAs, a striking variation in size is observed, ranging from a Nosema locustae MRP RNA of 160 nt to much larger RNAs, e.g. a Plasmodium knowlesi P RNA of 696 nt. The P and MRP RNA genes appear in tandem in some protists, further emphasizing the close evolutionary relationship of these RNAs.


Nucleic Acids Research | 2006

The tmRDB and SRPDB resources.

Ebbe Sloth Andersen; Magnus Alm Rosenblad; Niels Larsen; Jesper Cairo Westergaard; Jody M. Burks; Iwona K. Wower; Jacek Wower; Jan Gorodkin; Tore Samuelsson; Christian Zwieb

Maintained at the University of Texas Health Science Center at Tyler, Texas, the tmRNA database (tmRDB) is accessible at the URL with mirror sites located at Auburn University, Auburn, Alabama () and the Royal Veterinary and Agricultural University, Denmark (). The signal recognition particle database (SRPDB) at is mirrored at and the University of Goteborg (). The databases assist in investigations of the tmRNP (a ribonucleoprotein complex which liberates stalled bacterial ribosomes) and the SRP (a particle which recognizes signal sequences and directs secretory proteins to cell membranes). The curated tmRNA and SRP RNA alignments consider base pairs supported by comparative sequence analysis. Also shown are alignments of the tmRNA-associated proteins SmpB, ribosomal protein S1, alanyl-tRNA synthetase and Elongation Factor Tu, as well as the SRP proteins SRP9, SRP14, SRP19, SRP21, SRP54 (Ffh), SRP68, SRP72, cpSRP43, Flhf, SRP receptor (alpha) and SRP receptor (beta). All alignments can be easily examined using a new exploratory browser. The databases provide links to high-resolution structures and serve as depositories for structures obtained by molecular modeling.


Nucleic Acids Research | 2008

Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components

Marcela Dávila López; Magnus Alm Rosenblad; Tore Samuelsson

The RNA molecules of the spliceosome are critical for specificity and catalysis during splicing of eukaryotic pre-mRNA. In order to examine the evolution and phylogenetic distribution of these RNAs, we analyzed 149 eukaryotic genomes representing a broad range of phylogenetic groups. RNAs were predicted using high-sensitivity local alignment methods and profile HMMs in combination with covariance models. The results provide the most comprehensive view so far of the phylogenetic distribution of spliceosomal RNAs. RNAs were predicted in many phylogenetic groups where these RNA were not previously reported. Examples are RNAs of the major (U2-type) spliceosome in all fungal lineages, in lower metazoa and many protozoa. We also identified the minor (U12-type) spliceosomal U11 and U6atac RNAs in Acanthamoeba castellanii, where U12 spliceosomal RNA as well as minor introns were reported recently. In addition, minor-spliceosome-specific RNAs were identified in a number of phylogenetic groups where previously such RNAs were not observed, including the nematode Trichinella spiralis, the slime mold Physarum polycephalum and the fungal lineages Zygomycota and Chytridiomycota. The detailed map of the distribution of the U12-type RNA genes supports an early origin of the minor spliceosome and points to a number of occasions during evolution where it was lost.


RNA Biology | 2009

Kinship in the SRP RNA family.

Magnus Alm Rosenblad; Niels Larsen; Tore Samuelsson; Christian Zwieb

The signal recognition particle (SRP) is a ribonucleoprotein complex which participates in the targeting of protein to cellular membranes. The RNA component of the SRP has been found in all domains of life, but the size of the molecule and the number of RNA secondary structure elements vary considerably between the different phylogenetic groups. We continued our efforts to identify new SRP RNAs, compare their sequences, discover new secondary structure elements, conserved motifs, and other properties. We found additional proof for the variability in the apical loop of helix 8, and we identified several bacteria which lack all of their SRP components. Based on the distribution of SRP RNA features within the taxonomy, we suggest seven alignment groups: Bacteria with a small (4.5S) SRP RNA, Bacteria with a large (6S) SRP RNA, Archaea, Fungi (Ascomycota), Metazoa group, Protozoa group, and Plants. The proposed divisions improve the prediction of more distantly related SRP RNAs and provide a more inclusive representation of the SRP RNA family. Updates of the Rfam SRP RNA sequence collection are expected to benefit from the suggested groupings.


Nucleic Acids Research | 2006

Inventory and analysis of the protein subunits of the ribonucleases P and MRP provides further evidence of homology between the yeast and human enzymes

Magnus Alm Rosenblad; Marcela Dávila López; Paul Piccinelli; Tore Samuelsson

The RNases P and MRP are involved in tRNA and rRNA processing, respectively. Both enzymes in eukaryotes are composed of an RNA molecule and 9–12 protein subunits. Most of the protein subunits are shared between RNases P and MRP. We have here performed a computational analysis of the protein subunits in a broad range of eukaryotic organisms using profile-based searches and phylogenetic methods. A number of novel homologues were identified, giving rise to a more complete inventory of RNase P/MRP proteins. We present evidence of a relationship between fungal Pop8 and the protein subunit families Rpp14/Pop5 as well as between fungal Pop6 and metazoan Rpp25. These relationships further emphasize a structural and functional similarity between the yeast and human P/MRP complexes. We have also identified novel P and MRP RNAs and analysis of all available sequences revealed a K-turn motif in a large number of these RNAs. We suggest that this motif is a binding site for the Pop3/Rpp38 proteins and we discuss other structural features of the RNA subunit and possible relationships to the protein subunit repertoire.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2011

Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets

Johan Bengtsson; K. Martin Eriksson; Martin Hartmann; Zheng Wang; Belle Damodara Shenoy; Gwen-Aëlle Grelet; Kessy Abarenkov; Anna Petri; Magnus Alm Rosenblad; R. Henrik Nilsson

The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa (http://microbiology.se/software/metaxa/), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.


Molecular Pharmacology | 2010

Octopamine Receptors from the Barnacle Balanus improvisus Are Activated by the α2-Adrenoceptor Agonist Medetomidine

Ulrika Lind; Magnus Alm Rosenblad; Linda Hasselberg Frank; Susanna Falkbring; Lars Brive; Jonne M. Laurila; Katariina Pohjanoksa; Anne Vuorenpää; Jyrki P. Kukkonen; Lina Gunnarsson; Mika Scheinin; Lena G E Mårtensson Lindblad; Anders Blomberg

G protein-coupled octopamine receptors of insects and other invertebrates represent counterparts of adrenoceptors in vertebrate animals. The α2-adrenoceptor agonist medetomidine, which is in clinical use as a veterinary sedative agent, was discovered to inhibit the settling process of barnacles, an important step in the ontogeny of this crustacean species. Settling of barnacles onto ship hulls leads to biofouling that has many harmful practical consequences, and medetomidine is currently under development as a novel type of antifouling agent. We now report that medetomidine induces hyperactivity in the barnacle larvae to disrupt the settling process. To identify the molecular targets of medetomidine, we cloned five octopamine receptors from the barnacle Balanus improvisus. We show by phylogenetic analyses that one receptor (BiOctα) belongs to the α-adrenoceptor-like subfamily, and the other four (BiOctβ-R1, BiOctβ-R2, BiOctβ-R3, and BiOctβ-R4) belong to the β-adrenoceptor-like octopamine receptor subfamily. Phylogenetic analyses also indicated that B. improvisus has a different repertoire of β-adrenoceptor-like octopamine receptors than insects. When expressed in CHO cells, the cloned receptors were activated by both octopamine and medetomidine, resulting in increased intracellular cAMP or calcium levels. Tyramine activated the receptors but with much lesser potency than octopamine. A hypothesis for receptor discrimination between tyramine and octopamine was generated from a homology three-dimensional model. The characterization of B. improvisus octopamine receptors is important for a better functional understanding of these receptors in crustaceans as well as for practical applications in development of environmentally sustainable antifouling agents.


RNA Biology | 2009

Conserved and variable domains of RNase MRP RNA

Marcela Dávila López; Magnus Alm Rosenblad; Tore Samuelsson

Ribonuclease MRP is a eukaryotic ribonucleoprotein complex consisting of one RNA molecule and 7-10 protein subunits. One important function of MRP is to catalyze an endonucleolytic cleavage during processing of rRNA precursors. RNase MRP is evolutionary related to RNase P which is critical for tRNA processing. A large number of MRP RNA sequences that now are available have been used to identify conserved primary and secondary structure features of the molecule. MRP RNA has structural features in common with P RNA such as a conserved catalytic core, but it also has unique features and is characterized by a domain highly variable between species. Information regarding primary and secondary structure features is of interest not only in basic studies of the function of MRP RNA, but also because mutations in the RNA give rise to human genetic diseases such as cartilage-hair hypoplasia.


BMC Genomics | 2004

Identification and comparative analysis of components from the signal recognition particle in protozoa and fungi

Magnus Alm Rosenblad; Christian Zwieb; Tore Samuelsson

BackgroundThe signal recognition particle (SRP) is a ribonucleoprotein complex responsible for targeting proteins to the ER membrane. The SRP of metazoans is well characterized and composed of an RNA molecule and six polypeptides. The particle is organized into the S and Alu domains. The Alu domain has a translational arrest function and consists of the SRP9 and SRP14 proteins bound to the terminal regions of the SRP RNA. So far, our understanding of the SRP and its evolution in lower eukaryotes such as protozoa and yeasts has been limited. However, genome sequences of such organisms have recently become available, and we have now analyzed this information with respect to genes encoding SRP components.ResultsA number of SRP RNA and SRP protein genes were identified by an analysis of genomes of protozoa and fungi. The sequences and secondary structures of the Alu portion of the RNA were found to be highly variable. Furthermore, proteins SRP9/14 appeared to be absent in certain species. Comparative analysis of the SRP RNAs from different Saccharomyces species resulted in models which contain features shared between all SRP RNAs, but also a new secondary structure element in SRP RNA helix 5. Protein SRP21, previously thought to be present only in Saccharomyces, was shown to be a constituent of additional fungal genomes. Furthermore, SRP21 was found to be related to metazoan and plant SRP9, suggesting that the two proteins are functionally related.ConclusionsAnalysis of a number of not previously annotated SRP components show that the SRP Alu domain is subject to a more rapid evolution than the other parts of the molecule. For instance, the RNA portion is highly variable and the protein SRP9 seems to have evolved into the SRP21 protein in fungi. In addition, we identified a secondary structure element in the Sacccharomyces RNA that has been inserted close to the Alu region. Together, these results provide important clues as to the structure, function and evolution of SRP.


The Plant Cell | 2012

Evolution from the Prokaryotic to the Higher Plant Chloroplast Signal Recognition Particle: The Signal Recognition Particle RNA Is Conserved in Plastids of a Wide Range of Photosynthetic Organisms

Chantal Träger; Magnus Alm Rosenblad; Dominik Ziehe; Christel Garcia-Petit; Lukas Schrader; Klaus Kock; Christine V. Richter; Birgit Klinkert; Franz Narberhaus; Christian Herrmann; Eckhard Hofmann; Henrik Aronsson; Danja Schünemann

This article provides an analysis of chloroplast signal recognition particle (cpSRP) evolution within the green and red lineages. A focus lies on the distribution and characterization of the plastid-encoded SRP RNA component. Furthermore, the cpSRP system of Physcomitrella patens containing an SRP RNA and a cpSRP43 component was investigated, and the structure of the cpFtsY receptor was solved. The protein targeting signal recognition particle (SRP) pathway in chloroplasts of higher plants has undergone dramatic evolutionary changes. It disposed of its RNA, which is an essential SRP component in bacteria, and uses a unique chloroplast-specific protein cpSRP43. Nevertheless, homologs of the conserved SRP54 and the SRP receptor, FtsY, are present in higher plant chloroplasts. In this study, we analyzed the phylogenetic distribution of SRP components in photosynthetic organisms to elucidate the evolution of the SRP system. We identified conserved plastid SRP RNAs within all nonspermatophyte land plant lineages and in all chlorophyte branches. Furthermore, we show the simultaneous presence of cpSRP43 in these organisms. The function of this novel SRP system was biochemically and structurally characterized in the moss Physcomitrella patens. We show that P. patens chloroplast SRP (cpSRP) RNA binds cpSRP54 but has lost the ability to significantly stimulate the GTPase cycle of SRP54 and FtsY. Furthermore, the crystal structure at 1.8-Å resolution and the nucleotide specificity of P. patens cpFtsY was determined and compared with bacterial FtsY and higher plant chloroplast FtsY. Our data lead to the view that the P. patens cpSRP system occupies an intermediate position in the evolution from bacterial-type SRP to higher plant-type cpSRP system.

Collaboration


Dive into the Magnus Alm Rosenblad's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Zwieb

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Carl André

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Ulrika Lind

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Kessy Abarenkov

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge