Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magnus Andersen is active.

Publication


Featured researches published by Magnus Andersen.


Science of The Total Environment | 2013

What are the toxicological effects of mercury in Arctic biota

Rune Dietz; Christian Sonne; Niladri Basu; Birgit M. Braune; Todd M. O'Hara; Robert J. Letcher; Tony Scheuhammer; Magnus Andersen; Claus Andreasen; Dennis Andriashek; Gert Asmund; Aurore Aubail; Hans J. Baagøe; Erik W. Born; Hing Man Chan; Andrew E. Derocher; Philippe Grandjean; Katrina K. Knott; Maja Kirkegaard; Anke Krey; Nick Lunn; Francoise Messier; Marty Obbard; Morten Tange Olsen; Sonja K. Ostertag; Elizabeth Peacock; Aristeo Renzoni; Frank F. Rigét; Janneche Utne Skaare; Gary A. Stern

This review critically evaluates the available mercury (Hg) data in Arctic marine biota and the Inuit population against toxicity threshold values. In particular marine top predators exhibit concentrations of mercury in their tissues and organs that are believed to exceed thresholds for biological effects. Species whose concentrations exceed threshold values include the polar bears (Ursus maritimus), beluga whale (Delphinapterus leucas), pilot whale (Globicephala melas), hooded seal (Cystophora cristata), a few seabird species, and landlocked Arctic char (Salvelinus alpinus). Toothed whales appear to be one of the most vulnerable groups, with high concentrations of mercury recorded in brain tissue with associated signs of neurochemical effects. Evidence of increasing concentrations in mercury in some biota in Arctic Canada and Greenland is therefore a concern with respect to ecosystem health.


Polar Biology | 2002

Diet composition of polar bears in Svalbard and the western Barents Sea

Andrew E. Derocher; Øystein Wiig; Magnus Andersen

Abstract. We estimated both the numerical and biomass composition of the prey of polar bears (Ursus maritimus) from 135 opportunistic observations of kills in Svalbard and the western Barents Sea collected from March to October 1984–2001. By number, the prey composition was dominated by ringed seals (Phoca hispida) (63%), followed by bearded seals (Erignathus barbatus) (13%), harp seals (P. groenlandica) (8%) and unknown species (16%). However, when known prey were converted to biomass, the composition was dominated by bearded seals (55%), followed by ringed seals (30%) and harp seals (15%). Results indicated that bearded seals are an important dietary item for polar bears in the western Barents Sea. We believe that different patterns of space use by different bears may result in geographic variation of diet within the same population.


Journal of Mammalogy | 2005

SEXUAL DIMORPHISM OF POLAR BEARS

Andrew E. Derocher; Magnus Andersen; Øystein Wiig

Abstract Sexual dimorphism in body mass, body length, head width, head length, and foreleg guard hair length of polar bears (Ursus maritimus) was examined from live-captured polar bears in Svalbard, Norway. Limited evidence of sexual dimorphism was apparent in cubs shortly after den emergence but was marked after the 1st year of life. Sexual dimorphism in adults resulted from both a higher growth rate and prolonged growth period in males. In mature animals, sexual dimorphism was greatest in mass, followed by foreleg guard hair length, head width, body length, and head length. Foreleg guard hair length was age related and hypothesized to be a form of ornamentation. Geographic variation in sexual dimorphism was evident for mass and body length for seven different populations but there was no evidence of a hyperallometric relationship in sexual dimorphism.


BMC Microbiology | 2010

Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard

Trine Glad; Pål Bernhardsen; Kaare Magne Nielsen; Lorenzo Brusetti; Magnus Andersen; Jon Aars; Monica A. Sundset

BackgroundPolar bears (Ursus maritimus) are major predators in the Arctic marine ecosystem, feeding mainly on seals, and living closely associated with sea ice. Little is known of their gut microbial ecology and the main purpose of this study was to investigate the microbial diversity in faeces of polar bears in Svalbard, Norway (74-81°N, 10-33°E). In addition the level of blaTEM alleles, encoding ampicillin resistance (ampr) were determined. In total, ten samples were collected from ten individual bears, rectum swabs from five individuals in 2004 and faeces samples from five individuals in 2006.ResultsA 16S rRNA gene clone library was constructed, and all sequences obtained from 161 clones showed affiliation with the phylum Firmicutes, with 160 sequences identified as Clostridiales and one sequence identified as unclassified Firmicutes. The majority of the sequences (70%) were affiliated with the genus Clostridium. Aerobic heterotrophic cell counts on chocolate agar ranged between 5.0 × 104 to 1.6 × 106 colony forming units (cfu)/ml for the rectum swabs and 4.0 × 103 to 1.0 × 105 cfu/g for the faeces samples. The proportion of ampr bacteria ranged from 0% to 44%. All of 144 randomly selected ampr isolates tested positive for enzymatic β-lactamase activity. Three % of the ampr isolates from the rectal samples yielded positive results when screened for the presence of blaTEM genes by PCR. BlaTEM alleles were also detected by PCR in two out of three total faecal DNA samples from polar bears.ConclusionThe bacterial diversity in faeces from polar bears in their natural environment in Svalbard is low compared to other animal species, with all obtained clones affiliating to Firmicutes. Furthermore, only low levels of blaTEM alleles were detected in contrast to their increasing prevalence in some clinical and commensal bacterial populations.


Wildlife Society Bulletin | 2006

The Use of Global Positioning Systems to Record Distances in a Helicopter Line-Transect Survey

Tiago A. Marques; Magnus Andersen; Signe Christensen-Dalsgaard; Stanislav Belikov; Andrei N. Boltunov; Øystein Wiig; Stephen T. Buckland; Jon Aars

Abstract Methods that allow unbiased estimation of animal abundance are increasingly demanded in management and conservation. The use of these methods should respect their assumptions. The need for accurate distance measurements in distance-sampling surveys is stressed. Here we present 2 alternative methods for measuring distance from a line to an object during helicopter surveys: 1) using a Global Positioning System (GPS) unit, with distances measured using appropriate software; and 2) recording declination angles and altitudes, using basic trigonometry to obtain the appropriate distances. These are compared to distances measured by a laser rangefinder (assumed to be true distances). The effect of the different errors on estimated densities is assessed by simulation. The GPS method appeared to be very accurate, while a potential downward bias in estimated density could be present if the inclinometer method is used. We discuss the implication for wildlife studies of using different measurement methods leading to different errors.


Journal of Parasitology | 2009

Prevalence of antibodies against Toxoplasma gondii in polar bears (Ursus maritimus) from Svalbard and East Greenland.

Antti Oksanen; Kjetil Åsbakk; Kristin Wear Prestrud; Jon Aars; Andrew E. Derocher; Morten Tryland; Øystein Wiig; J. P. Dubey; Christian Sonne; Rune Dietz; Magnus Andersen; Erik W. Born

Abstract Serum samples from 419 polar bears (Ursus maritimus) from Svalbard and the Barents Sea (collected 1990–2000) and 108 polar bears from East Greenland (collected 1999–2004) were assayed for antibodies against Toxoplasma gondii using the modified agglutination test. Antibody prevalences were 3.6% among cubs dependent on their mothers and 21.4% among subadults and adults. Among subadults and adults there was an interaction between population and sex, with similar prevalences among females (Svalbard = 19.5%, Greenland = 18.0%), but a high frequency among Svalbard males (28.7%) as compared to Greenland males (5.8%). The pattern was also significant after correcting for differences in age distribution. The sex-population interaction term is believed to be connected to area- and sex-specific feeding ecology. The prevalences of antibodies against T. gondii in Svalbard and Greenland were high compared to previously reported findings in polar bears from Russian and Alaskan areas.


Marine Pollution Bulletin | 2002

Bioaccumulation of radiocaesium in Arctic seals.

JoLynn Carroll; Hans Wolkers; Magnus Andersen; Kristina Rissanen

Seals are high trophic level feeders that bioaccumulate many contaminants to a greater degree than most lower trophic level organisms. Their trophic status in the marine food web and wide-spread distribution make seals useful sentinels of arctic environmental change. The purpose of this investigation is to document the levels and bioaccumulation potential of radiocaesium in high latitude seal species for which data have not previously been available. The study was carried out on harp, ringed, and bearded seals caught north of the island archipelago of Svalbard (82 degrees N) in 1999. The results are then compared with previous studies in order to elucidate factors responsible for bioaccumulation in Arctic seals. Concentrations of 137Cs were determined in muscle, liver and kidney samples from a total of 10 juvenile and one adult seal. The mean concentration in muscle samples for all animals was 0.23 +/- 0.045 Bq/kg f.w. 137Cs concentrations in both liver and kidney samples were near detection limits (approximately 0.2 Bq/kg f.w.). The results are consistent with previous studies indicating low levels of radiocaesium in Arctic seals in response to a long term trend of decreasing levels of 137Cs in the Barents Sea region. Bioconcentration factors (BCFs) estimated for seals from NE Svalbard are low, ranging from 34 to 130. Comparing these values with reported BCFs for Greenland seals from other sectors of the European Arctic, we suggest that the combination of physiological and ecological factors on radiocaesium bioaccumulation is comparable among different Arctic seal populations. The application of this work to Arctic monitoring and assessment programs is discussed.


Zoo Biology | 2011

Milk composition in free-ranging polar bears (Ursus maritimus) as a model for captive rearing milk formula

Gail E. Hedberg; Andrew E. Derocher; Magnus Andersen; Quinton R. Rogers; E.J. DePeters; Bo Lönnerdal; Lisa M. Mazzaro; Russell W. Chesney; Bruce W. Hollis

The goals of this study were to have an improved understanding of milk composition and to help create a suitable milk formula for cubs raised in captivity. Milk samples were evaluated for fat, fatty acids, carbohydrate, vitamin D(3), 25(OH)D(3), vitamin A (retinol), vitamin E (α-tocopherol), protein, and amino acids. Total lipids in milk did not differ for cubs (mean ± SEM = 26.60 ± 1.88 g/100 ml vs. yearlings 27.80 ± 2.20 g/100 ml). Milk lipids were of 23.6% saturated fatty acid for cubs and 22.4% for yearlings. Milk consumed by cubs and yearlings contained 43.8 and 42.0% mono-unsaturated fatty acids and 23.4 and 21.9% polyunsaturated fatty acids, respectively. Carbohydrate content was higher in milk for cubs (4.60 ± 0.64 g/100 ml) than for yearlings (2.60 ± 0.40 g/100 ml). Vitamin D(3) concentration of milk was 18.40 ± 5.00 ng/ml in early lactation compared with 7.60 ± 2.00 ng/ml for mid-lactation. 25(OH)D(3) was lower in milk consumed by cubs (162.00 ± 6.70 pg/ml) than in milk consumed by yearlings (205.00 ± 45.70 pg/ml). Vitamin A concentrations were 0.06 ± 0.01 and 0.03 ± 0.01 µg/ml for cubs and yearlings, respectively. Vitamin E was higher in milk consumed by cubs (20.16 ± 4.46 µg/ml) than by yearlings (7.30 ± 1.50 µg/ml). Protein content did not differ in milk available to cubs (11.40 ± 0.80 g/100 ml compared with milk for yearlings 11.80 ± 0.40 g/100 ml). Taurine was the most abundant free amino acid at 3,165.90 ± 192.90 nmol/ml (0.04% as fed basis).


PLOS ONE | 2016

Geographical Area and Life History Traits Influence Diet in an Arctic Marine Predator.

Sabrina Tartu; Sophie Bourgeon; Jon Aars; Magnus Andersen; Dorothee Ehrich; Gregory W. Thiemann; Jeffrey M. Welker; Heli Routti

Global changes are thought to affect most Arctic species, yet some populations are more at risk. Today, the Barents Sea ecoregion is suffering the strongest sea ice retreat ever measured; and these changes are suspected to modify food access and thus diet of several species. Biochemical diet tracers enable investigation of diet in species such as polar bears (Ursus maritimus). We examined individual diet variation of female polar bears in Svalbard, Norway, and related it to year, season (spring and autumn), sampling area and breeding status (solitary, with cubs of the year or yearlings). Sampling areas were split according to their ice cover: North-West (less sea ice cover), South-East (larger amplitude in sea ice extent) and North-East/South-West (NESW) as bears from that zone are more mobile among all regions of Svalbard. We measured fatty acid (FA) composition in adipose tissue and carbon (δ13C) and nitrogen (δ15N) stable isotopes in plasma and red blood cells. Females feeding in the North-West area had lower δ15N values than those from the NESW. In South-East females, δ13C values were lower in autumn compared to spring and females seemed less selective in their diet as depicted by large variances in stable isotope values. Considering the differences in FA composition and stable isotope values, we suggest that females from the North-West and South-East could ingest a higher proportion of avian prey. With regard to breeding status, solitary females had higher δ15N values and smaller variance in their stable isotopic values than females with cubs, suggesting that solitary females were more selective and prey on higher trophic level species (i.e. seals). Overall, our results indicate that prey availability for Svalbard polar bears varies according to geographical area and prey selectivity differs according to breeding status. Our findings suggest that complex changes in sea ice and prey availability will interact to affect Svalbard polar bear feeding patterns and associated nutrition.


Advances in Experimental Medicine and Biology | 2009

Does Taurine Deficiency Cause Metabolic Bone Disease and Rickets in Polar Bear Cubs Raised in Captivity

Russell W. Chesney; Gail E. Hedberg; Quinton R. Rogers; Ellen S. Dierenfeld; Bruce E. Hollis; Andrew E. Derocher; Magnus Andersen

Rickets and fractures have been reported in captive polar bears. Taurine (TAU) is key for the conjugation of ursodeoxycholic acid (UDCA), a bile acid unique to bears. Since TAU-conjugated UDCA optimizes fat and fat-soluble vitamin absorption, we asked if TAU deficiency could cause vitamin D malabsorption and lead to metabolic bone disease in captive polar bears. We measured TAU levels in plasma (P) and whole blood (WB) from captive and free-ranging cubs and adults, and vitamin D3 and TAU concentrations in milk samples from lactating sows. Plasma and WB TAU levels were significantly higher in cubs vs captive and free-ranging adult bears. Vitamin D in polar bear milk was 649.2 +/- 569.2 IU/L, similar to that found in formula. The amount of TAU in polar bear milk is 3166.4 +/- 771 nmol/ml, 26-fold higher than in formula. Levels of vitamin D in bear milk and formula as well as in plasma do not indicate classical nutritional vitamin D deficiency. Higher dietary intake of TAU by free-ranging cubs may influence bile acid conjugation and improve vitamin D absorption.

Collaboration


Dive into the Magnus Andersen's collaboration.

Top Co-Authors

Avatar

Jon Aars

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Øystein Wiig

American Museum of Natural History

View shared research outputs
Top Co-Authors

Avatar

Christian Lydersen

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Kit M. Kovacs

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Heli Routti

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Kit Maureen Kovacs

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Sabrina Tartu

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Sophie Bourgeon

Norwegian Polar Institute

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Welker

University of Alaska Anchorage

View shared research outputs
Researchain Logo
Decentralizing Knowledge