Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magnus Heurlin is active.

Publication


Featured researches published by Magnus Heurlin.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

Nanowires With Promise for Photovoltaics

Magnus T. Borgström; Jesper Wallentin; Magnus Heurlin; S. Fält; Peter Wickert; J. Leene; Martin Magnusson; Knut Deppert; Lars Samuelson

Solar energy harvesting for electricity production is regarded as a fully credible future energy source: plentiful and without serious environmental concerns. The breakthrough for solar energy technology implementation has, however, been hampered by two issues: the conversion efficiency of light into electricity and the solar panel production cost. The use of III-V nanowires (NWs) in photovoltaics allows to respond to both these demands. They offer efficient light absorption and significant cost reduction. These low-dimensional structures can be grown epitaxially in dense NW arrays directly on silicon wafers, which are abundant and cheaper than the germanium substrates used for triple-junction solar cells today. For planar structures, lattice matching poses a strong restriction on growth. III-V NWs offer to create highly efficient multijunction devices, since multiple materials can be combined to match the solar spectrum without the need of tightly controlled lattice matching. At the same time, less material is required for NW-based solar cells than for planar-based architecture. This approach has potential to reach more than 50% in efficiency. Here, we describe our work on NW tandem solar cells, aiming toward two junctions absorbing different parts of the solar spectrum, connected in series via a tunnel diode.


Nature Nanotechnology | 2012

Spatially resolved Hall effect measurement in a single semiconductor nanowire

Kristian Storm; Filip Halvardsson; Magnus Heurlin; David Lindgren; Anders Gustafsson; Phillip M. Wu; B. Monemar; Lars Samuelson

Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device design offered by the nanowire geometry. However, for nanowire-based components to move past the proof-of-concept stage and be implemented in production-grade devices, it is necessary to precisely quantify and control fundamental material properties such as doping and carrier mobility. Unfortunately, the nanoscale geometry that makes nanowires interesting for applications also makes them inherently difficult to characterize. Here, we report a method to carry out Hall measurements on single core-shell nanowires. Our technique allows spatially resolved and quantitative determination of the carrier concentration and mobility of the nanowire shell. As Hall measurements have previously been completely unavailable for nanowires, the experimental platform presented here should facilitate the implementation of nanowires in advanced practical devices.


Nature | 2012

Continuous gas-phase synthesis of nanowires with tunable properties.

Magnus Heurlin; Martin Magnusson; David Lindgren; Martin Ek; L. Reine Wallenberg; Knut Deppert; Lars Samuelson

Semiconductor nanowires are key building blocks for the next generation of light-emitting diodes, solar cells and batteries. To fabricate functional nanowire-based devices on an industrial scale requires an efficient methodology that enables the mass production of nanowires with perfect crystallinity, reproducible and controlled dimensions and material composition, and low cost. So far there have been no reports of reliable methods that can satisfy all of these requirements. Here we show how aerotaxy, an aerosol-based growth method, can be used to grow nanowires continuously with controlled nanoscale dimensions, a high degree of crystallinity and at a remarkable growth rate. In our aerotaxy approach, catalytic size-selected Au aerosol particles induce nucleation and growth of GaAs nanowires with a growth rate of about 1 micrometre per second, which is 20 to 1,000 times higher than previously reported for traditional, substrate-based growth of nanowires made of group III–V materials. We demonstrate that the method allows sensitive and reproducible control of the nanowire dimensions and shape—and, thus, controlled optical and electronic properties—through the variation of growth temperature, time and Au particle size. Photoluminescence measurements reveal that even as-grown nanowires have good optical properties and excellent spectral uniformity. Detailed transmission electron microscopy investigations show that our aerotaxy-grown nanowires form along one of the four equivalent 〈111〉B crystallographic directions in the zincblende unit cell, which is also the preferred growth direction for III–V nanowires seeded by Au particles on a single-crystal substrate. The reported continuous and potentially high-throughput method can be expected substantially to reduce the cost of producing high-quality nanowires and may enable the low-cost fabrication of nanowire-based devices on an industrial scale.


Nano Letters | 2011

Axial InP Nanowire Tandem Junction Grown on a Silicon Substrate

Magnus Heurlin; Peter Wickert; Stefan Fält; Magnus T. Borgström; Knut Deppert; Lars Samuelson; Martin Magnusson

Tandem InP nanowire pn-junctions have been grown on a Si substrate using metal-organic vapor phase epitaxy. In situ HCl etching allowed the different subcomponents to be stacked on top of each other in the axial extension of the nanowires without detrimental radial growth. Electro-optical measurements on a single nanowire tandem pn-junction device show an open-circuit voltage of 1.15 V under illumination close to 1 sun, which is an increase of 67% compared to a single pn-junction device.


Nanotechnology | 2012

Growth of InAs/InP core–shell nanowires with various pure crystal structures

Sepideh Gorji Ghalamestani; Magnus Heurlin; Lars-Erik Wernersson; Sebastian Lehmann; Kimberly A. Dick

We have studied the epitaxial growth of an InP shell on various pure InAs core nanowire crystal structures by metal-organic vapor phase epitaxy. The InP shell is grown on wurtzite (WZ), zinc-blende (ZB), and {111}- and {110}-type faceted ZB twin-plane superlattice (TSL) structures by tuning the InP shell growth parameters and controlling the shell thickness. The growth results, particularly on the WZ nanowires, show that homogeneous InP shell growth is promoted at relatively high temperatures (∼500 °C), but that the InAs nanowires decompose under the applied conditions. In order to protect the InAs core nanowires from decomposition, a short protective InP segment is first grown axially at lower temperatures (420-460 °C), before commencing the radial growth at a higher temperature. Further studies revealed that the InP radial growth rate is significantly higher on the ZB and TSL nanowires compared to WZ counterparts, and shows a strong anisotropy in polar directions. As a result, thin shells were obtained during low temperature InP growth on ZB structures, while a higher temperature was used to obtain uniform thick shells. In addition, a schematic growth model is suggested to explain the basic processes occurring during the shell growth on the TSL crystal structures.


Nano Research | 2014

Absorption of light in InP nanowire arrays

Nicklas Anttu; Alireza Abrand; Damir Asoli; Magnus Heurlin; Ingvar Åberg; Lars Samuelson; Magnus T. Borgström

An understanding of the absorption of light is essential for efficient photovoltaic and photodetection applications with III–V nanowire arrays. Here, we correlate experiments with modeling and verify experimentally the predicted absorption of light in InP nanowire arrays for varying nanowire diameter and length. We find that 2,000 nm long nanowires in a pitch of 400 nm can absorb 94% of the incident light with energy above the band gap and, as a consequence, light which in a simple ray-optics description would be travelling between the nanowires can be efficiently absorbed by the nanowires. Our measurements demonstrate that the absorption for long nanowires is limited by insertion reflection losses when light is coupled from the air top-region into the array. These reflection losses can be reduced by introducing a smaller diameter to the nanowire-part closest to the air top-region. For nanowire arrays with such a nanowire morphology modulation, we find that the absorptance increases monotonously with increasing diameter of the rest of the nanowire.


Nano Letters | 2015

A Comparative Study of Absorption in Vertically and Laterally Oriented InP Core-Shell Nanowire Photovoltaic Devices.

Ali Nowzari; Magnus Heurlin; Vishal Jain; Kristian Storm; Ali Hosseinnia; Nicklas Anttu; Magnus T. Borgström; H. Pettersson; Lars Samuelson

We have compared the absorption in InP core-shell nanowire p-i-n junctions in lateral and vertical orientation. Arrays of vertical core-shell nanowires with 400 nm pitch and 280 nm diameter, as well as corresponding lateral single core-shell nanowires, were configured as photovoltaic devices. The photovoltaic characteristics of the samples, measured under 1 sun illumination, showed a higher absorption in lateral single nanowires compared to that in individual vertical nanowires, arranged in arrays with 400 nm pitch. Electromagnetic modeling of the structures confirmed the experimental observations and showed that the absorption in a vertical nanowire in an array depends strongly on the array pitch. The modeling demonstrated that, depending on the array pitch, absorption in a vertical nanowire can be lower or higher than that in a lateral nanowire with equal absorption predicted at a pitch of 510 nm for our nanowire geometry. The technology described in this Letter facilitates quantitative comparison of absorption in laterally and vertically oriented core-shell nanowire p-i-n junctions and can aid in the design, optimization, and performance evaluation of nanowire-based core-shell photovoltaic devices.


Applied Physics Letters | 2011

InAs quantum dots and quantum wells grown on stacking-fault controlled InP nanowires with wurtzite crystal structure

Kenichi Kawaguchi; Magnus Heurlin; David Lindgren; Magnus T. Borgström; Martin Ek; Lars Samuelson

Heteroepitaxial growth of InAs was investigated on sidewalls of InP nanowires (NWs) using metal-organic vapor phase epitaxy. InAs quantum wells (QWs) with smooth surface were formed on the InP NWs having perfect wurtzite phase structure. On the other hand, InAs quantum dots (QDs) were formed on wurtzite InP NWs purposely introduced with stacking-fault segments. Photoluminescence from single NWs attributed to both QWs and QDs was observed


Nanotechnology | 2015

Study of carrier concentration in single InP nanowires by luminescence and Hall measurements.

David Lindgren; Olof Hultin; Magnus Heurlin; Kristian Storm; Magnus T. Borgström; Lars Samuelson; Anders Gustafsson

The free electron carrier concentrations in single InP core-shell nanowires are determined by micro-photoluminescence, cathodoluminescence (CL) and Hall effect measurements. The results from luminescence measurements were obtained by solving the Fermi-Dirac integral, as well as by analyzing the peak full width at half maximum (FWHM). Furthermore, the platform used for Hall effect measurements, combined with spot mode CL spectroscopy, is used to determine the carrier concentrations at specific positions along single nanowires. The results obtained via luminescence measurements provide an accurate and rapid feedback technique for the epitaxial development of doping incorporation in nanowires. The technique has been employed on several series of samples in which growth parameters, such as V/III-ratio, temperature and dopant flows, were investigated in an optimization procedure. The correlation between the Hall effect and luminescence measurements for extracting the carrier concentration of different samples were in excellent agreement.


Nano Letters | 2015

In Situ Characterization of Nanowire Dimensions and Growth Dynamics by Optical Reflectance

Magnus Heurlin; Nicklas Anttu; Christian Camus; Lars Samuelson; Magnus T. Borgström

Optical reflectometry is commonly used as an accurate and noninvasive characterization tool when growing planar semiconductor layers. However, thin-film analysis schemes cannot be directly applied to nanowire systems due to their complex optical response. Here, we report on reliable in situ characterization of nanowire growth with high accuracy using optical reflectance spectra for analysis. The method makes it possible to determine the nanowire length, diameter, and growth rate in situ in real time with high resolution. We demonstrate the methods versatility by using the optical reflectance data for determining nanowire dimensions on both particle-assisted and selective-area grown nanowires. To indicate the full potential of in situ characterization of nanowire synthesis we evaluate the growth dynamics of InP nanowires in the presence of the p-type dopant precursor diethylzinc. We observe that the growth rate is strongly affected by the diethylzinc. At low diethylzinc flows, the growth rate decreases monotonously while higher flows lead to an initially increasing growth rate. From these in situ characterization data, we conclude that the surface migration length of adatom species is affected strongly by the addition of diethylzinc. We believe that this characterization method will become a standard tool for in situ growth monitoring and aid in elucidating the complex growth dynamics often exhibited during nanowire growth.

Collaboration


Dive into the Magnus Heurlin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge