Mahasweta Das
University of South Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahasweta Das.
Journal of Neuroinflammation | 2012
Mahasweta Das; Subhra Mohapatra; Shyam S. Mohapatra
Traumatic injury to the brain (TBI) results in a complex set of responses involving various symptoms and long-term consequences. TBI of any form can cause cognitive, behavioral and immunologic changes in later life, which underscores the problem of underdiagnosis of mild TBI that can cause long-term neurological deficits. TBI disrupts the blood–brain barrier (BBB) leading to infiltration of immune cells into the brain and subsequent inflammation and neurodegeneration. TBI-induced peripheral immune responses can also result in multiorgan damage. Despite worldwide research efforts, the methods of diagnosis, monitoring and treatment for TBI are still relatively ineffective. In this review, we delve into the mechanism of how TBI-induced central and peripheral immune responses affect the disease outcome and discuss recent developments in the continuing effort to combat the consequences of TBI and new ways to enhance repair of the damaged brain.
Journal of Materials Chemistry B | 2013
Chunyan Wang; Sowndharya Ravi; Ujjwala Sree Garapati; Mahasweta Das; Mark Howell; Jaya Mallela; Subbiah Alwarappan; Shyam S. Mohapatra; Subhra Mohapatra
Combing chemotherapy with gene therapy has been one of the most promising strategies for the treatment of cancer. The noninvasive MRI with superparamagnetic iron oxide (SPIO) as contrast agent is one of the most effecitve techniques for evaluating the antitumor therapy. However, to construct a single system that can deliver efficiently gene, drug and SPIO to the cancer site remains a challenge. Herein, we report a chitosan functionalized magnetic graphene nanoparticle (CMG) platform for simultaneous gene/drug and SPIO delivery to tumor. The phantom and ex vivo MRI images suggest CMG as a strong T2 contrast-enhancing agent. The CMGs are biocompatible as evaluated by the WST assay and predominantly accumulate in tumors as shown by biodistribution studies and MRI. The anticancer drug doxorubicin (DOX) loaded CMGs (DOX-CMGs) release DOX faster at pH 5.1 than at pH 7.4, and more effective (IC50 = 2 μM) in killing A549 lung cancer cells than free DOX (IC50 = 4 μM). CMGs efficiently deliver DNA into A549 lung cancer cells and C42b prostate cancer cells. In addition, i.v. administration of GFP-plasmid encapsulated within DOX-CMGs into tumor-bearing mice has showed both GFP expression and DOX accumulation at the tumor site at 24 and 48 hrs after administration. These results indicate CMGs provide a robust and safe theranostic platform, which integrates targeted delivery of both gene medicine and chemotherapeutic drug(s), and enhanced MR imaging of tumors. The integrated chemo- and gene- therapeutic and diagnostic design of CMG nanoparticles shows promise for simultaneous targeted imaging, drug delivery and real -time monitoring of therapeutic effect for cancer.
The Journal of Comparative Neurology | 2007
Mahasweta Das; Christopher S. Vihlen; Gabor Legradi
The hypothalamic paraventricular nucleus (PVN) coordinates major neuroendocrine and behavioral mechanisms, particularly responses to homeostatic challenges. Parvocellular and magnocellular PVN neurons are richly innervated by pituitary adenylate cyclase‐activating polypeptide (PACAP) axons. Our recent functional observations have also suggested that PACAP may be an excitatory neuropeptide at the level of the PVN. Nevertheless, the exact localization of PACAP‐producing neurons that project to the PVN is not understood. The present study examined the specific contribution of various brain areas sending PACAP innervation to the rat PVN by using iontophoretic microinjections of the retrograde neuroanatomical tracer cholera toxin B subunit (CTb). Retrograde transport was evaluated from hypothalamic and brainstem sections by using multiple labeling immunofluorescence for CTb and PACAP. PACAP‐containing cell groups were found to be retrogradely labeled from the PVN in the median preoptic nucleus; preoptic and lateral hypothalamic areas; arcuate, dorsomedial, ventromedial, and supramammillary nuclei; ventrolateral midbrain periaqueductal gray; rostral and midlevel ventrolateral medulla, including the C1 catecholamine cell group; nucleus of the solitary tract; and dorsal motor nucleus of vagus. Minor PACAP projections with scattered double‐labeled neurons originated from the parabrachial nucleus, pericoeruleus area, and caudal regions of the nucleus of the solitary tract and ventrolateral medulla. These observations indicate a multisite origin of PACAP innervation to the PVN and provide a strong chemical neuroanatomical foundation for interaction between PACAP and its potential target neurons in the PVN, such as parvocellular CRH neurons, controlling physiologic responses to stressful challenges and other neuroendocrine or preautonomic PVN neurons. J. Comp. Neurol. 500:761–776, 2007.
Regulatory Peptides | 2005
Seth D. Norrholm; Mahasweta Das; Gabor Legradi
Pituitary adenylate cyclase activating polypeptide (PACAP) has been implicated in the regulation of several autonomic and neuroendocrine functions. In the hypothalamic paraventricular nucleus (PVN), for example, PACAP-immunoreactive fibers densely innervate corticotropin-releasing hormone (CRH)-containing neurons in the medial parvocellular region, suggesting that PACAP acts to mediate stress responses. Therefore, we examined the behavioral effects of an intra-PVN PACAP injection (25 pmol) in combination with a mild stressor. PACAP or artificial cerebrospinal fluid (aCSF) was microinjected into the PVN (0.25 l) and then animals were restrained or placed in their home cage for 5 min. Exploratory activity (total distance traveled) and scored behaviors (face washing, body grooming, wet dog shakes, and rearing) were observed in a familiar open field for 10 min. In animals receiving aCSF, there were no behavioral differences between restrained and unrestrained groups. For the entire 10-min observation period, animals receiving PACAP, whether restrained or not, displayed elevated face washing and body grooming with decreased locomotor activity and rearing. Among PACAP-injected animals, restrained animals displayed increased body grooming compared to unrestrained animals during the first 2 min in the open field suggesting a summation of the effects of peptide injection and stressor. The observed elevation in grooming is consistent with previous studies reporting similar increases following electrical-, NMDA-, CRH-, or stressor-induced activation of the PVN. Thus, at the level of the PVN, PACAP may act as an excitatory neuropeptide and augment behavioral responses to stressors.
Journal of Neuroinflammation | 2011
Mahasweta Das; Christopher C. Leonardo; Saniya Rangooni; Keith R. Pennypacker; Subhra Mohapatra; Shyam S. Mohapatra
BackgroundTraumatic brain injury (TBI) evokes a systemic immune response including leukocyte migration into the brain and release of pro-inflammatory cytokines; however, the mechanisms underlying TBI pathogenesis and protection are poorly understood. Due to the high incidence of head trauma in the sports field, battlefield and automobile accidents identification of the molecular signals involved in TBI progression is critical for the development of novel therapeutics.MethodsIn this report, we used a rat lateral fluid percussion impact (LFPI) model of TBI to characterize neurodegeneration, apoptosis and alterations in pro-inflammatory mediators at two time points within the secondary injury phase. Brain histopathology was evaluated by fluoro-jade (FJ) staining and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, polymerase chain reaction (qRT PCR), enzyme linked immunosorbent assay (ELISA) and immunohistochemistry were employed to evaluate the CCL20 gene expression in different tissues.ResultsHistological analysis of neurodegeneration by FJ staining showed mild injury in the cerebral cortex, hippocampus and thalamus. TUNEL staining confirmed the presence of apoptotic cells and CD11b+ microglia indicated initiation of an inflammatory reaction leading to secondary damage in these areas. Analysis of spleen mRNA by PCR microarray of an inflammation panel led to the identification of CCL20 as an important pro-inflammatory signal upregulated 24 h after TBI. Although, CCL20 expression was observed in spleen and thymus after 24h of TBI, it was not expressed in degenerating cortex or hippocampal neurons until 48 h after insult. Splenectomy partially but significantly decreased the CCL20 expression in brain tissues.ConclusionThese results demonstrate that the systemic inflammatory reaction to TBI starts earlier than the local brain response and suggest that spleen- and/ or thymus-derived CCL20 might play a role in promoting neuronal injury and central nervous system inflammation in response to mild TBI.
Neural Plasticity | 2007
Gabor Legradi; Mahasweta Das; Brian Giunta; Khemraj Hirani; E. Alice Mitchell; David M. Diamond
High concentrations of pituitary adenylate cyclase-activating polypeptide (PACAP) nerve fibers are present in the central nucleus of amygdala (CeA), a brain region implicated in the control of fear-related behavior. This study evaluated PACAPergic modulation of fear responses at the CeA in male Sprague-Dawley rats. PACAP (50–100 pmol) microinfusion via intra-CeA cannulae produced increases in immobility and time the rats spent withdrawn into a corner opposite to the electrified probe compared to controls in the shock-probe fear/defensive burying test. Shock-probe burying and exploration, numbers of shocks received, locomotion distance, and velocity were all reduced by intra-CeA PACAP injection. Further, intra-CeA PACAP effects were manifested only when the animals were challenged by shock, as intra-CeA PACAP injections did not cause significant changes in the behaviors of unshocked rats. Thus, intra-CeA administration of PACAP produces a distinct reorganization of stress-coping behaviors from active (burying) to passive modes, such as withdrawal and immobility. These findings are potentially significant toward enhancing our understanding of the involvement of PACAP and the CeA in the neural basis of fear and anxiety.
Nanomedicine: Nanotechnology, Biology and Medicine | 2014
Mahasweta Das; Chunyan Wang; Raminder Bedi; Shyam S. Mohapatra; Subhra Mohapatra
Traumatic brain injury (TBI) causes significant mortality, long term disability and psychological symptoms. Gene therapy is a promising approach for treatment of different pathological conditions. Here we tested chitosan and polyethyleneimine (PEI)-coated magnetic micelles (CP-mag micelles or CPMMs), a potential MRI contrast agent, to deliver a reporter DNA to the brain after mild TBI (mTBI). CPMM-tomato plasmid (ptd) conjugate expressing a red-fluorescent protein (RFP) was administered intranasally immediately after mTBI or sham surgery in male SD rats. Evans blue extravasation following mTBI suggested CPMM-ptd entry into the brain via the compromised blood-brain barrier. Magnetofection increased the concentration of CPMMs in the brain. RFP expression was observed in the brain (cortex and hippocampus), lung and liver 48 h after mTBI. CPMM did not evoke any inflammatory response by themselves and were excreted from the body. These results indicate the possibility of using intranasally administered CPMM as a theranostic vehicle for mTBI. From the clinical editor: In this study, chitosan and PEI-coated magnetic micelles (CPMM) were demonstrated as potentially useful vehicles in traumatic brain injury in a rodent model. Magnetofection increased the concentration of CPMMs in the brain and, after intranasal delivery, CPMM did not evoke any inflammatory response and were excreted from the body.
RSC Advances | 2013
Suraj Dixit; Mahasweta Das; Subbiah Alwarappan; Nancy L. Goicochea; Mark Howell; Subhra Mohapatra; Shyam S. Mohapatra
We encapsulated gadolinium oxide (Gd2O3) nanoparticles within phospholipid micelles as a novel low cytotoxic T1-weighted MRI imaging contrast agent (MGdNPs) that can also deliver small molecules such as DNA plasmids. MGdNPs show relatively good MRI relaxivity values, negligible cytotoxicity, excellent cellular uptake and expression of DNA plasmids in vivo. Biodistribution studies in mice show that intranasal and intraperitoneal administration of MGdNPs can effectively target specific organs.
Chirurg | 2012
Subhra Mohapatra; Shyam S. Mohapatra; Keith R. Pennypacker; Mahasweta Das; Christopher C. Leonardo
Traumatic brain injury (TBI) is still the major cause of death under 45 years of age and an important one for children under 15. Its incidence is 332/100,000 inhabitants. It results from an impact with the skull with/without lesion of the brain but at least a short-term neurological disorder. All other injuries to the skull should be called concussion. The duration of unconsciousness defines the severity of TBI. Patients with TBI should be admitted to a surgical ward. Those retaining consciousness and with GCS scores of 15 might be allowed to go home if under surveillance. With GCS of <15 or with risk factors, TBI requires a CT scan and in-hospital surveillance. Acutely life-threatening, i.e. space-occupying, bleeding must be operated on immediately. Epidural or subdural bleeding, especially in comatose patients, is still a vital risk and thus requires immediate surgery.
Reviews in The Neurosciences | 2018
Mahasweta Das; Xiaolan Tang; Shyam S. Mohapatra; Subhra Mohapatra
Abstract Traumatic brain injury (TBI) is a major cause of mortality and morbidity in the USA as well as in the world. As a result of TBI, the visual system is also affected often causing complete or partial visual loss, which in turn affects the quality of life. It may also lead to ocular motor dysfunction, defective accommodation, and impaired visual perception. As a part of the therapeutic strategy, early rehabilitative optometric intervention is important. Orthoptic therapy, medication, stem cell therapy, motor and attention trainings are the available treatment options. Gene therapy is one of the most promising emerging strategies. Use of state-of-the-art nanomedicine approaches to deliver drug(s) and/or gene(s) might enhance the therapeutic efficacy of the present and future modalities. More research is needed in these fields to improve the outcome of this debilitating condition. This review focuses on different visual pathologies caused by TBI, advances in pre-clinical and clinical research, and available treatment options.