Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahendar Thudi is active.

Publication


Featured researches published by Mahendar Thudi.


Nature Biotechnology | 2013

Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement

Rajeev K. Varshney; Chi Song; Rachit K. Saxena; Sarwar Azam; Sheng Yu; Andrew G. Sharpe; Steven B. Cannon; Jong-Min Baek; Benjamin D. Rosen; Bunyamin Tar'an; Teresa Millán; Xudong Zhang; Larissa Ramsay; Aiko Iwata; Ying Wang; William C. Nelson; Andrew D. Farmer; Pooran M. Gaur; Carol Soderlund; R. Varma Penmetsa; Chunyan Xu; Arvind K. Bharti; Weiming He; Peter Winter; Shancen Zhao; James K. Hane; Noelia Carrasquilla-Garcia; Janet A. Condie; Hari D. Upadhyaya; Ming-Cheng Luo

Chickpea (Cicer arietinum) is the second most widely grown legume crop after soybean, accounting for a substantial proportion of human dietary nitrogen intake and playing a crucial role in food security in developing countries. We report the ∼738-Mb draft whole genome shotgun sequence of CDC Frontier, a kabuli chickpea variety, which contains an estimated 28,269 genes. Resequencing and analysis of 90 cultivated and wild genotypes from ten countries identifies targets of both breeding-associated genetic sweeps and breeding-associated balancing selection. Candidate genes for disease resistance and agronomic traits are highlighted, including traits that distinguish the two main market classes of cultivated chickpea—desi and kabuli. These data comprise a resource for chickpea improvement through molecular breeding and provide insights into both genome diversity and domestication.


PLOS ONE | 2011

Novel SSR Markers from BAC-End Sequences, DArT Arrays and a Comprehensive Genetic Map with 1,291 Marker Loci for Chickpea (Cicer arietinum L.)

Mahendar Thudi; Abhishek Bohra; Spurthi N. Nayak; Nicy Varghese; Trushar Shah; R. Varma Penmetsa; Nepolean Thirunavukkarasu; Srivani Gudipati; Pooran M. Gaur; Pawan L. Kulwal; Hari D. Upadhyaya; Polavarapu B. KaviKishor; Peter Winter; Günter Kahl; Christopher D. Town; Andrzej Kilian; Douglas R. Cook; Rajeev K. Varshney

Chickpea (Cicer arietinum L.) is the third most important cool season food legume, cultivated in arid and semi-arid regions of the world. The goal of this study was to develop novel molecular markers such as microsatellite or simple sequence repeat (SSR) markers from bacterial artificial chromosome (BAC)-end sequences (BESs) and diversity arrays technology (DArT) markers, and to construct a high-density genetic map based on recombinant inbred line (RIL) population ICC 4958 (C. arietinum)×PI 489777 (C. reticulatum). A BAC-library comprising 55,680 clones was constructed and 46,270 BESs were generated. Mining of these BESs provided 6,845 SSRs, and primer pairs were designed for 1,344 SSRs. In parallel, DArT arrays with ca. 15,000 clones were developed, and 5,397 clones were found polymorphic among 94 genotypes tested. Screening of newly developed BES-SSR markers and DArT arrays on the parental genotypes of the RIL mapping population showed polymorphism with 253 BES-SSR markers and 675 DArT markers. Segregation data obtained for these polymorphic markers and 494 markers data compiled from published reports or collaborators were used for constructing the genetic map. As a result, a comprehensive genetic map comprising 1,291 markers on eight linkage groups (LGs) spanning a total of 845.56 cM distance was developed (http://cmap.icrisat.ac.in/cmap/sm/cp/thudi/). The number of markers per linkage group ranged from 68 (LG 8) to 218 (LG 3) with an average inter-marker distance of 0.65 cM. While the developed resource of molecular markers will be useful for genetic diversity, genetic mapping and molecular breeding applications, the comprehensive genetic map with integrated BES-SSR markers will facilitate its anchoring to the physical map (under construction) to accelerate map-based cloning of genes in chickpea and comparative genome evolution studies in legumes.


The Plant Genome | 2013

Fast-track introgression of “QTL-hotspot” for root traits and other drought tolerance traits in JG 11, an elite and leading variety of chickpea

Rajeev K. Varshney; Pooran M. Gaur; Siva K. Chamarthi; L. Krishnamurthy; Shailesh Tripathi; Junichi Kashiwagi; Srinivasan Samineni; Vikas K. Singh; Mahendar Thudi; Deepa Jaganathan

A “QTL‐hotspot” containing quantitative trait loci (QTL) for several root and drought tolerance traits was transferred through marker‐assisted backcrossing into JG 11, a leading variety of chickpea (Cicer arietinum L.) in India from the donor parent ICC 4958. Foreground selection with up to three simple sequence repeat markers, namely TAA170, ICCM0249, and STMS11, and background selection with up to 10 amplified fragment length polymorphism primer combinations was undertaken. After undertaking three backcrosses with foreground and background selection and selfing, 29 BC3F2 plants homozygous for two markers (ICCM0249 and TAA170) were selected and referred as introgression lines (ILs). Root trait phenotyping of these ILs showed higher rooting depth (RDp) (average 115.21 ± 2.24 cm) in all 29 ILs, better root length density (RLD) (average 0.41 ± 0.02 cm cm−3) in 26 ILs, and higher root dry weight (RDW) (average 1.25 ± 0.08 g per cylinder) as compared to the recurrent parent, JG 11 (111.70 cm for RDp, 0.39 cm cm−3 for RLD, and 1.10 g per cylinder for RDW), as well as the donor parent, ICC 4958 (114.20 cm for RDp, 0.45 cm cm−3 for RLD, and 1.25 g per cylinder for RDW). These ILs, developed in 3 yr, after multilocation field trials may be released as improved variety with enhanced drought tolerance.


PLOS ONE | 2014

Genetic Dissection of Drought and Heat Tolerance in Chickpea through Genome-Wide and Candidate Gene-Based Association Mapping Approaches

Mahendar Thudi; Hari D. Upadhyaya; Abhishek Rathore; Pooran M. Gaur; Lakshmanan Krishnamurthy; Manish Roorkiwal; Spurthi N. Nayak; Sushil K. Chaturvedi; Partha Sarathi Basu; N. V. P. R. Gangarao; Asnake Fikre; Paul Kimurto; P. C. Sharma; M. S. Sheshashayee; Satoshi Tobita; Junichi Kashiwagi; Osamu Ito; Andrzej Killian; Rajeev K. Varshney

To understand the genetic basis of tolerance to drought and heat stresses in chickpea, a comprehensive association mapping approach has been undertaken. Phenotypic data were generated on the reference set (300 accessions, including 211 mini-core collection accessions) for drought tolerance related root traits, heat tolerance, yield and yield component traits from 1–7 seasons and 1–3 locations in India (Patancheru, Kanpur, Bangalore) and three locations in Africa (Nairobi, Egerton in Kenya and Debre Zeit in Ethiopia). Diversity Array Technology (DArT) markers equally distributed across chickpea genome were used to determine population structure and three sub-populations were identified using admixture model in STRUCTURE. The pairwise linkage disequilibrium (LD) estimated using the squared-allele frequency correlations (r2; when r2<0.20) was found to decay rapidly with the genetic distance of 5 cM. For establishing marker-trait associations (MTAs), both genome-wide and candidate gene-sequencing based association mapping approaches were conducted using 1,872 markers (1,072 DArTs, 651 single nucleotide polymorphisms [SNPs], 113 gene-based SNPs and 36 simple sequence repeats [SSRs]) and phenotyping data mentioned above employing mixed linear model (MLM) analysis with optimum compression with P3D method and kinship matrix. As a result, 312 significant MTAs were identified and a maximum number of MTAs (70) was identified for 100-seed weight. A total of 18 SNPs from 5 genes (ERECTA, 11 SNPs; ASR, 4 SNPs; DREB, 1 SNP; CAP2 promoter, 1 SNP and AMDH, 1SNP) were significantly associated with different traits. This study provides significant MTAs for drought and heat tolerance in chickpea that can be used, after validation, in molecular breeding for developing superior varieties with enhanced drought and heat tolerance.


DNA Research | 2013

Integrated consensus map of cultivated peanut and wild relatives reveals structures of the A and B genomes of Arachis and divergence of the legume genomes.

Kenta Shirasawa; David J. Bertioli; Rajeev K. Varshney; Márcio C. Moretzsohn; Soraya C. M. Leal-Bertioli; Mahendar Thudi; Manish K. Pandey; Jean-François Rami; Daniel Foncéka; M. V. C. Gowda; Hongde Qin; Baozhu Guo; Yanbin Hong; Xuanqiang Liang; Hideki Hirakawa; Satoshi Tabata; Sachiko Isobe

The complex, tetraploid genome structure of peanut (Arachis hypogaea) has obstructed advances in genetics and genomics in the species. The aim of this study is to understand the genome structure of Arachis by developing a high-density integrated consensus map. Three recombinant inbred line populations derived from crosses between the A genome diploid species, Arachis duranensis and Arachis stenosperma; the B genome diploid species, Arachis ipaënsis and Arachis magna; and between the AB genome tetraploids, A. hypogaea and an artificial amphidiploid (A. ipaënsis × A. duranensis)4×, were used to construct genetic linkage maps: 10 linkage groups (LGs) of 544 cM with 597 loci for the A genome; 10 LGs of 461 cM with 798 loci for the B genome; and 20 LGs of 1442 cM with 1469 loci for the AB genome. The resultant maps plus 13 published maps were integrated into a consensus map covering 2651 cM with 3693 marker loci which was anchored to 20 consensus LGs corresponding to the A and B genomes. The comparative genomics with genome sequences of Cajanus cajan, Glycine max, Lotus japonicus, and Medicago truncatula revealed that the Arachis genome has segmented synteny relationship to the other legumes. The comparative maps in legumes, integrated tetraploid consensus maps, and genome-specific diploid maps will increase the genetic and genomic understanding of Arachis and should facilitate molecular breeding.


Frontiers in Plant Science | 2016

Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects

Manish K. Pandey; Manish Roorkiwal; Vikas K. Singh; Abirami Ramalingam; Himabindu Kudapa; Mahendar Thudi; Anu Chitikineni; Abhishek Rathore; Rajeev K. Varshney

Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries.


Journal of Biosciences | 2012

Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genotyping technologies.

Rajeev K. Varshney; Himabindu Kudapa; Manish Roorkiwal; Mahendar Thudi; Manish K. Pandey; Rachit K. Saxena; Siva K. Chamarthi; Murali Mohan S; Nalini Mallikarjuna; Hari D. Upadhyaya; Pooran M. Gaur; L. Krishnamurthy; K. B. Saxena; S. N. Nigam; S. Pande

Molecular markers are the most powerful genomic tools to increase the efficiency and precision of breeding practices for crop improvement. Progress in the development of genomic resources in the leading legume crops of the semi-arid tropics (SAT), namely, chickpea (Cicer arietinum), pigeonpea (Cajanus cajan) and groundnut (Arachis hypogaea), as compared to other crop species like cereals, has been very slow. With the advances in next-generation sequencing (NGS) and high-throughput (HTP) genotyping methods, there is a shift in development of genomic resources including molecular markers in these crops. For instance, 2,000 to 3,000 novel simple sequence repeats (SSR) markers have been developed each for chickpea, pigeonpea and groundnut. Based on Sanger, 454/FLX and Illumina transcript reads, transcriptome assemblies have been developed for chickpea (44,845 transcript assembly contigs, or TACs) and pigeonpea (21,434 TACs). Illumina sequencing of some parental genotypes of mapping populations has resulted in the development of 120 million reads for chickpea and 128.9 million reads for pigeonpea. Alignment of these Illumina reads with respective transcriptome assemblies have provided >10,000 SNPs each in chickpea and pigeonpea. A variety of SNP genotyping platforms including GoldenGate, VeraCode and Competitive Allele Specific PCR (KASPar) assays have been developed in chickpea and pigeonpea. By using above resources, the first-generation or comprehensive genetic maps have been developed in the three legume species mentioned above. Analysis of phenotyping data together with genotyping data has provided candidate markers for drought-tolerance-related root traits in chickpea, resistance to foliar diseases in groundnut and sterility mosaic disease (SMD) and fertility restoration in pigeonpea. Together with these trait-associated markers along with those already available, molecular breeding programmes have been initiated for enhancing drought tolerance, resistance to fusarium wilt and ascochyta blight in chickpea and resistance to foliar diseases in groundnut. These trait-associated robust markers along with other genomic resources including genetic maps and genomic resources will certainly accelerate crop improvement programmes in the SAT legumes.


Molecular Breeding | 2012

Assessment of ICCV 2 × JG 62 chickpea progenies shows sensitivity of reproduction to salt stress and reveals QTL for seed yield and yield components

Vincent Vadez; L. Krishnamurthy; Mahendar Thudi; Chetukuri Anuradha; Timothy D. Colmer; Neil C. Turner; Kadambot H. M. Siddique; Pooran M. Gaur; Rajeev K. Varshney

Salinity is a complex abiotic stress and understanding the physiological and genetic basis of salinity tolerance is a prerequisite for improving existing crop cultivars. Experiments were undertaken using 126 recombinant inbred lines from a cross between JG 62 (tolerant) and ICCV 2 (sensitive) to characterize traits related to seed yield differences under saline conditions and to map quantitative trait loci (QTL). The population segregated for flowering time and entries were separated into ‘early’ and ‘late’ phenology groups to undertake the analysis. In both groups seed yield varied under salinity, with seed number being the most closely related trait to yield. In contrast, seed yield was not related to 100-seed weight or flowering time. Shoot dry weight was positively correlated with seed yield in the early entries only, but had no significant relationship with seed number. The higher sensitivity to salinity of the early entries was related both to a smaller biomass and lesser seed number under saline conditions. A QTL for seed yield under saline conditions was found in linkage group 3 in the late group, and a cluster of QTL for seed yield components in linkage group 6, including a QTL for seed number which explained 37% of the variation. In contrast, no QTL for seed yield was found in the early group, but a QTL for seed number under saline conditions was found. These data indicate that salinity tolerance traits are linked to the degree of earliness in chickpea. Tolerance is determined by the success of reproductive sites in both early and late entries, which relates in part to constitutive traits, and by the capacity of maintaining growth in early-flowering lines only. This is the first report of QTL for seed yield and seed number in chickpea exposed to salinity.


Scientific Reports | 2015

Prioritization of candidate genes in “ QTL-hotspot ” region for drought tolerance in chickpea ( Cicer arietinum L.)

Sandip M. Kale; Deepa Jaganathan; Pradeep Ruperao; Charles Chen; Ramu Punna; Himabindu Kudapa; Mahendar Thudi; Manish Roorkiwal; Mohan A. V. S. K. Katta; Dadakhalandar Doddamani; Vanika Garg; P. B. Kavi Kishor; Pooran M. Gaur; Henry T. Nguyen; Jacqueline Batley; David Edwards; Tim Sutton; Rajeev K. Varshney

A combination of two approaches, namely QTL analysis and gene enrichment analysis were used to identify candidate genes in the “QTL-hotspot” region for drought tolerance present on the Ca4 pseudomolecule in chickpea. In the first approach, a high-density bin map was developed using 53,223 single nucleotide polymorphisms (SNPs) identified in the recombinant inbred line (RIL) population of ICC 4958 (drought tolerant) and ICC 1882 (drought sensitive) cross. QTL analysis using recombination bins as markers along with the phenotyping data for 17 drought tolerance related traits obtained over 1–5 seasons and 1–5 locations split the “QTL-hotspot” region into two subregions namely “QTL-hotspot_a” (15 genes) and “QTL-hotspot_b” (11 genes). In the second approach, gene enrichment analysis using significant marker trait associations based on SNPs from the Ca4 pseudomolecule with the above mentioned phenotyping data, and the candidate genes from the refined “QTL-hotspot” region showed enrichment for 23 genes. Twelve genes were found common in both approaches. Functional validation using quantitative real-time PCR (qRT-PCR) indicated four promising candidate genes having functional implications on the effect of “QTL-hotspot” for drought tolerance in chickpea.


Plant Biotechnology Journal | 2016

QTL-seq for rapid identification of candidate genes for 100-seed weight and root/total plant dry weight ratio under rainfed conditions in chickpea

Vikas K. Singh; Aamir W. Khan; Deepa Jaganathan; Mahendar Thudi; Manish Roorkiwal; Hiroki Takagi; Vanika Garg; Vinay Kumar; Annapurna Chitikineni; Pooran M. Gaur; Tim Sutton; Ryohei Terauchi; Rajeev K. Varshney

Summary Terminal drought is a major constraint to chickpea productivity. Two component traits responsible for reduction in yield under drought stress include reduction in seeds size and root length/root density. QTL‐seq approach, therefore, was used to identify candidate genomic regions for 100‐seed weight (100SDW) and total dry root weight to total plant dry weight ratio (RTR) under rainfed conditions. Genomewide SNP profiling of extreme phenotypic bulks from the ICC 4958 × ICC 1882 population identified two significant genomic regions, one on CaLG01 (1.08 Mb) and another on CaLG04 (2.7 Mb) linkage groups for 100SDW. Similarly, one significant genomic region on CaLG04 (1.10 Mb) was identified for RTR. Comprehensive analysis revealed four and five putative candidate genes associated with 100SDW and RTR, respectively. Subsequently, two genes (Ca_04364 and Ca_04607) for 100SDW and one gene (Ca_04586) for RTR were validated using CAPS/dCAPS markers. Identified candidate genomic regions and genes may be useful for molecular breeding for chickpea improvement.

Collaboration


Dive into the Mahendar Thudi's collaboration.

Top Co-Authors

Avatar

Rajeev K. Varshney

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Pooran M. Gaur

Crops Research Institute

View shared research outputs
Top Co-Authors

Avatar

Manish Roorkiwal

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Srinivasan Samineni

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Deepa Jaganathan

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Aamir W. Khan

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Annapurna Chitikineni

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

L. Krishnamurthy

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Vanika Garg

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Top Co-Authors

Avatar

Abhishek Rathore

International Crops Research Institute for the Semi-Arid Tropics

View shared research outputs
Researchain Logo
Decentralizing Knowledge