Mahmud M. Hussain
University of Pennsylvania
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahmud M. Hussain.
Accounts of Chemical Research | 2008
Mahmud M. Hussain; Patrick J. Walsh
[Reaction: see text] In 1980, Sharpless and Katsuki introduced the asymmetric epoxidation of prochiral allylic alcohols (the Sharpless-Katsuki asymmetric epoxidation), which enabled the rapid synthesis of highly enantioenriched epoxy alcohols. This reaction was a milestone in the development of asymmetric catalysis because it was the first highly enantioselective oxidation reaction. Furthermore, it provided access to enantioenriched allylic alcohols that are now standard starting materials in natural product synthesis. In 1981, Sharpless and co-workers made another seminal contribution by describing the kinetic resolution (KR) of racemic allylic alcohols. This work demonstrated that small-molecule catalysts could compete with enzymatic catalysts in KRs. For these pioneering works, Sharpless was awarded the 2001 Nobel Prize with Knowles and Noyori. Despite these achievements, the Sharpless KR is not an efficient method to prepare epoxy alcohols with high enantiomeric excess (ee). First, the racemic allylic alcohol must be prepared and purified. KR of the racemic allylic alcohol must be stopped at low conversion, because the ee of the product epoxy alcohol decreases as the KR progresses. Thus, better methods to prepare epoxy alcohols containing stereogenic carbinol carbons are needed. This Account summarizes our efforts to develop one-pot methods for the synthesis of various epoxy alcohols and allylic epoxy alcohols with high enantio-, diastereo-, and chemoselectivity. Our laboratory developed titanium-based catalysts for use in the synthesis of epoxy alcohols with tertiary carbinols. The catalysts are involved in the first step, which is an asymmetric alkyl or allyl addition to enones. The resulting intermediates are then subjected to a titanium-directed diastereoselective epoxidation to provide tertiary epoxy alcohols. Similarly, the synthesis of acyclic epoxy alcohols begins with asymmetric additions to enals and subsequent epoxidation. The methods described here enable the synthesis of skeletally diverse epoxy alcohols.
Journal of the American Chemical Society | 2009
Mahmud M. Hussain; Hongmei Li; Nusrah Hussain; Mercedes Ureña; Patrick J. Carroll; Patrick J. Walsh
1-Alkenyl-1,1-heterobimetallics are potentially very useful in stereoselective organic synthesis but are relatively unexplored. Introduced herein is a practical application of 1-alkenyl-1,1-heterobimetallic intermediates in the synthesis of versatile cyclopropyl alcohol boronate esters, which are valuable building blocks. Thus, hydroboration of 1-alkynyl-1-boronate esters with dicyclohexylborane generates 1-alkenyl-1,1-diboro species. In situ transmetalation with dialkylzinc reagents furnishes 1-alkenyl-1,1-borozinc heterobimetallic intermediates. Addition of the more reactive ZnC bond to aldehydes generates the key B(pin) substituted allylic alkoxide intermediates. An in situ alkoxide directed cyclopropanation proceeds with the formation of two more CC bonds, affording cyclopropyl alcohol boronate esters with three new stereocenters in 58-89% isolated yields and excellent diastereoselectivities (>15:1 dr). Oxidation of the BC bond provides trisubstituted alpha-hydroxycyclopropyl carbinols as single diastereomers in good to excellent yields (75-93%). Facile pinacol-type rearrangement of the alpha-hydroxycyclopropyl carbinols provides access to both cis- and trans-2,3-disubstituted cyclobutanones with high stereoselectivity (>17:1 dr in most cases) from a common starting material. This methodology has been applied in the synthesis of quercus lactones A and B.
Angewandte Chemie | 2010
Mahmud M. Hussain; Patrick J. Walsh
One catalyst, two reactions; a tale of chemoselectivity: Given the choice between an allylic acetate and a vinylboronate ester, palladium preferentially reacts with the allylic acetate giving the allylic substitution product. In the presence of an aryl bromide and base, Suzuki cross-coupling subsequently ensues to afford allylic amines.
Organic Letters | 2011
Jorge Hernández-Toribio; Mahmud M. Hussain; Kevin Cheng; Patrick J. Carroll; Patrick J. Walsh
We report that 2-B(pin)-substituted allylic alcohols are good substrates for diastereoselective aziridinations in the presence of PhI(OAc)(2) and N-aminophthalimide. Under the aziridination conditions, the valuable B-C bond remains intact, affording a variety of novel boron-substituted aziridines in good yields and excellent diastereoselectivities. Oxidation of the aziridine B-C bond enables generation of syn-1,3-aminohydroxy-2-ketones with high diastereoselectivity.
Organic Letters | 2011
Nusrah Hussain; Mahmud M. Hussain; Muhammed Ziauddin; Plengchat Triyawatanyu; Patrick J. Walsh
Vinylation of aryl N-(2-pyridylsulfonyl) aldimines with versatile 1-alkenyl-1,1-borozinc heterobimetallic reagents is disclosed. In situ hydroboration of air-stable B(pin)-alkynes followed by chemoselective transmetalation with dimethylzinc and addition to aldimines provides B(pin)-substituted allylic amines in 53-93% yield in a one-pot procedure. The addition step can be followed by either B-C bond oxidation to provide α-amino ketones (71-98% yield) or Suzuki cross-coupling to furnish trisubstituted 2-arylated (E)-allylic amines (51-73% yield).
Chemical Science | 2014
Byeong-Seon Kim; Mahmud M. Hussain; Per-Ola Norrby; Patrick J. Walsh
η3-Allyl palladium complexes are key intermediates in Tsuji-Trost allylic substitution reactions. It is well known that (η3-1-aryl-3-alkyl substituted allyl)Pd intermediates result in nucleophilic attack at the alkyl substituted terminus. In contrast, the chemistry of (η3-1,2,3-trisubstituted allyl)Pd intermediates is relatively unexplored. Herein we probe the regioselectivity with 1,2,3-trisubstituted allylic substrates in Tsuji-Trost allylic substitution reactions. DFT investigation of cationic (η3-1-Ph-2-B(pin)-3-alkyl-allyl)Pd(PPh3)2 intermediates predict that nucleophilic attack should occur preferentially on anti-allyls rather than the syn-isomers to generate benzylic substitution products under Curtin-Hammett conditions. Experimentally, systematic studies with 1,2,3-trisubstituted allylic substrates revealed that a Linear Free Energy Relationship (LFER) is observed when Charton steric parameters of the C-2 substituents are plotted against the log of the ratio of regioisomers. Bulkier C-2 substituents in 1,2,3-trisubstituted η3-allyl palladium intermediates provide stronger preference for nucleophilic attack at anti-oriented benzylic termini. Additionally, the geometry of 1,4-elimination products supports the presence of anti-allyl palladium intermediates.
Chemistry: A European Journal | 2014
Byeong-Seon Kim; Mahmud M. Hussain; Nusrah Hussain; Patrick J. Walsh
A formidable challenge at the forefront of organic synthesis is the control of chemoselectivity to enable the selective formation of diverse structural motifs from a readily available substrate class. Presented herein is a detailed study of chemoselectivity with palladium-based phosphane catalysts and readily available 2-B(pin)-substituted allylic acetates, benzoates, and carbonates. Depending on the choice of reagents, catalysts, and reaction conditions, 2-B(pin)-substituted allylic acetates and derivatives can be steered into one of three reaction manifolds: allylic substitution, Suzuki-Miyaura cross-coupling, or elimination to form allenes, all with excellent chemoselectivity. Studies on the chemoselectivity of Pd catalysts in their reactivity with boron-bearing allylic acetate derivatives led to the development of diverse and practical reactions with potential utility in synthetic organic chemistry.
Chemical Science | 2013
Nusrah Hussain; Mahmud M. Hussain; Patrick J. Carroll; Patrick J. Walsh
A novel retrosynthetic disconnection for the stereoselective preparation of α,α′-dioxygenated carbonyl compounds is disclosed. Herein we report a method to divert the oxidation of vinyl boronate esters from the B–C bond to the CC bond, resulting in a new stereoselective class of oxidation products from vinyl boronate esters. Treatment of 2-B(pin)-substituted allylic alcohols with catalytic OV(acac)2 and TBHP resulted in a highly chemo- and diastereoselective directed epoxidation to provide B(pin)-substituted epoxy alcohols (55–96% yield, dr > 20 : 1). In the case of B(pin)-substituted bis-allylic alcohols, highly substituted bis-epoxy alcohols with five contiguous stereocenters were obtained (dr > 20 : 1). Furthermore, the difference in reactivity between allylic alcohols and 2-B(pin)-substituted allylic alcohols towards epoxidation enabled the selective oxidation of the allylic alcohol in the presence of TBHP and VO(acac)2. The reactivity difference between the two allylic alcohols suggests CCB(pin) to be more electron deficient than CC(alkyl). The B(pin)-substituted epoxy alcohols are also useful synthetic intermediates. Tandem vanadium catalyzed epoxidation of the 2-B(pin)-substituted allylic and bis-allylic alcohols with excess TBHP generated the intermediate epoxides and bis-epoxides, respectively. Subsequent addition of NaOH resulted in the oxidation of the B–C bond of the B(pin)-substituted epoxides to afford 2-keto-anti-1,3-diols (60–83% yield) and epoxide-substituted 2-keto-anti-1,3-diols (60–78% yield, dr > 20 : 1). The latter underwent a novel facile acid-mediated cyclization to furnish fully substituted dihydroxy-tetrahydrofuran-3-ones (65–91% yield, dr > 20 : 1). Such compounds are difficult to efficiently access via conventional synthetic methods.
Journal of the American Chemical Society | 2011
Jiadi Zhang; Corneliu Stanciu; Beibei Wang; Mahmud M. Hussain; Chao-Shan Da; Patrick J. Carroll; Spencer D. Dreher; Patrick J. Walsh
Angewandte Chemie | 2011
Mahmud M. Hussain; Jorge Hernández Toribio; Patrick J. Carroll; Patrick J. Walsh