Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maho Ogoshi is active.

Publication


Featured researches published by Maho Ogoshi.


FEBS Letters | 2004

Identification of novel adrenomedullin in mammals: a potent cardiovascular and renal regulator

Yoshio Takei; Koji Inoue; Maho Ogoshi; Tetsushi Kawahara; Hideo Bannai; Satoru Miyano

We have identified cDNA encoding a new member of the adrenomedullin (AM) family, AM2, for the first time in mammals (mouse, rat and human). The predicted precursor carried mature AM2 in the C‐terminus, which had an intramolecular ring formed by an S–S bond and a possibly amidated C‐terminus. Phylogenetic analyses clustered AM2 and AM into two distinct but closely related groups. Similarity of exon–intron structure and synteny of neighboring genes showed that mammalian AM2 is an ortholog of pufferfish AM2 and a paralog of mammalian AM. AM2 mRNA was expressed in submaxillary gland, kidney, stomach, ovary, lymphoid tissues and pancreas of mice, but not in adrenal and testis. Intravenous injection of synthetic mature AM2 decreased arterial pressure more potently than AM, and induced antidiuresis and antinatriuresis in mice. These results show that at least two peptides, AM and AM2, comprise an adrenomedullin family in mammals, and that AM2 may play pivotal roles in cardiovascular and body fluid regulation.


Peptides | 2006

Evolutionary history of the calcitonin gene-related peptide family in vertebrates revealed by comparative genomic analyses

Maho Ogoshi; Koji Inoue; Kiyoshi Naruse; Yoshio Takei

The calcitonin gene-related peptide (CGRP) family is composed of CGRP, amylin and adrenomedullin (AM) in mammals. In teleost fish, AM forms an independent subfamily of five members (AM1-5), which inspired us to trace the evolutionary history of the CGRP family throughout vertebrates by comparative genomic approach. Linkage mapping and synteny analyses of the CGRP family genes in medaka, Oryzias latipes, revealed that AM1/CGRP, AM2/amylin, and AM5 genes were located on respective proto-chromosomes before the divergence of teleost lineage. In teleost fish, additional whole genome duplication generated AM1/4, CGRP1/2, AM2/3, but one of the duplicated amylin and AM5 genes was silenced. In mammals, the amylin or AM2 gene was translocated to different chromosomes, while the CGRP gene was multiplied in tandem to generate CGRP-alpha,beta, and recently identified calcitonin receptor-stimulating peptide genes. Based on these data, we identified a novel AM5 gene in several mammalian species as we previously did for AM2.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Differential expression of Na+-Cl- cotransporter and Na+-K+-Cl- cotransporter 2 in the distal nephrons of euryhaline and seawater pufferfishes

Akira Kato; Takayuki Muro; Yuuri Kimura; Shanshan Li; Zinia Islam; Maho Ogoshi; Hiroyuki Doi; Shigehisa Hirose

The process of NaCl reabsorption in the distal nephron allows freshwater fishes to excrete hypotonic urine and seawater fishes to excrete urine containing high concentrations of divalent ions; the relevant transporters, however, have not yet been identified. In the mammalian distal nephron, NaCl absorption is mediated by Na(+)-K(+)-Cl(-) cotransporter 2 (NKCC2, Slc12a1) in the thick ascending limb, Na(+)-Cl(-) cotransporter (NCC, Slc12a3) in the distal convoluted tubule, and epithelial sodium channel (ENaC) in the collecting duct. In this study, we compared the expression profiles of these proteins in the kidneys of euryhaline and seawater pufferfishes. Mining the fugu genome identified one NKCC2 gene and one NCC gene, but no ENaC gene. RT-PCR and in situ hybridization analyses demonstrated that NKCC2 was highly expressed in the distal tubules and NCC was highly expressed in the collecting ducts of euryhaline pufferfish (mefugu, Takifugu obscurus). On the other hand, the kidney of seawater pufferfish (torafugu, Takifugu rubripes), which lacked distal tubules, expressed very low levels of NCC, and, in the collecting ducts, high levels of NKCC2. Acclimation of mefugu to seawater resulted in a 2.7× decrease in NCC expression, whereas NKCC2 expression was not markedly affected. Additionally, internalization of NCC from the apical surface of the collecting ducts was observed. These results suggest that NaCl reabsorption in the distal nephron of the fish kidney is mediated by NCC and NKCC2 in freshwater and by NKCC2 in seawater.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Identification of renal transporters involved in sulfate excretion in marine teleost fish

Akira Kato; Min Hwang Chang; Yukihiro Kurita; Tsutomu Nakada; Maho Ogoshi; Takeru Nakazato; Hiroyuki Doi; Shigehisa Hirose; Michael F. Romero

Sulfate (SO(4)(2-)) is the second most abundant anion in seawater (SW), and excretion of excess SO(4)(2-) from ingested SW is essential for marine fish to survive. Marine teleosts excrete SO(4)(2-) via the urine produced in the kidney. The SO(4)(2-) transporter that secretes and concentrates SO(4)(2-) in the urine has not previously been identified. Here, we have identified and characterized candidates for the long-sought transporters. Using sequences from the fugu database, we have cloned cDNA fragments of all transporters belonging to the Slc13 and Slc26 families from mefugu (Takifugu obscurus). We compared Slc13 and Slc26 mRNA expression in the kidney between freshwater (FW) and SW mefugu. Among 14 clones examined, the expression of a Slc26a6 paralog (mfSlc26a6A) was the most upregulated (30-fold) in the kidney of SW mefugu. Electrophysiological analyses of Xenopus oocytes expressing mfSlc26a6A, mfSlc26a6B, and mouse Slc26a6 (mSlc26a6) demonstrated that all transporters mediate electrogenic Cl(-)/SO(4)(2-), Cl(-)/oxalate(2-), and Cl(-)/nHCO(3)(-) exchanges and electroneutral Cl(-)/formate(-) exchange. Two-electrode voltage-clamp experiments demonstrated that the SO(4)(2-)-elicited currents of mfSlc26a6A is quite large (approximately 35 microA at +60 mV) and 50- to 200-fold higher than those of mfSlc26a6B and mSlc26a6. Conversely, the currents elicited by oxalate and HCO(3)(-) are almost identical among mfSlc26a6A, mfSlc26a6B, and mSlc26a6. Kinetic analysis revealed that mfSlc26a6A has the highest SO(4)(2-) affinity as well as capacity. Immunohistochemical analyses demonstrated that mfSlc26a6A localizes to the apical (brush-border) region of the proximal tubules. Together, these findings suggest that mfSlc26a6A is the most likely candidate for the major apical SO(4)(2-) transporter that mediates SO(4)(2-) secretion in the kidney of marine teleosts.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Potent cardiovascular actions of homologous adrenomedullins in eels

Shigenori Nobata; Maho Ogoshi; Yoshio Takei

Adrenomedullin (AM), known as a multifunctional hormone in mammals, forms a unique family of five paralogous peptides in teleost fish. To examine their cardiovascular effects using homologous AMs in eels, we isolated cDNAs encoding four eel AMs, and named AM1 (ortholog of mammalian AM), AM2, AM3 (paralog of AM2 generated only in teleost lineage), and AM5 according to the known teleost AM sequences. Unlike pufferfish, not only AM1 but AM2/3 and AM5 were expressed ubiquitously in various eel tissues. Synthetic mature AM1, AM2, and AM5 exhibited vasodepressor effects after intra-arterial injections, and the effects were more potent at dorsal aorta than at ventral aorta. This indicates that AMs preferentially act on peripheral resistance vessels rather than on branchial arterioles. The potency was in the order of AM2 = AM5 >> AM1 in both freshwater (FW) and seawater (SW) eels, which is different from the result of mammals in which AM1 is as potent as, or more potent than, AM2 when injected peripherally. The minimum effective dose of AM2 and AM5 in eels was 1/10 that of AM1 in mammals. The hypotension reached 50% at 1.0 nmol/kg of AM2 and AM5, which is much greater than atrial natriuretic peptide (20%), another potent vasodepressor hormone. Even with such hypotension, AMs did not change heart rate in eels. In addition, AM1 increased blood pressure at ventral aorta and dorsal aorta immediately after an initial hypotension at 5.0 nmol/kg, but not with AM2 and AM5. These data strongly suggest that specific receptors for AM2 and AM5 exist in eels, which differ from the AM1 receptors identified in mammals.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Potent osmoregulatory actions of homologous adrenomedullins administered peripherally and centrally in eels

Maho Ogoshi; Shigenori Nobata; Yoshio Takei

The teleost adrenomedullin (AM) family consists of three groups, AM1/AM4, AM2/AM3, and AM5. In the present study, we examined the effects of homologous AM1, AM2, and AM5 on drinking and renal function after peripheral or central administration in conscious freshwater eels. AM2 and AM5, but not AM1, exhibited dose-dependent (0.01-1 nmol/kg) dipsogenic and antidiuretic effects after intra-arterial bolus injection. The antidiuretic effect was significantly correlated with the degree of associated hypotension. To avoid the potential indirect osmoregulatory effects of AM-induced hypotension, infusion of AMs was also performed at nondepressor doses. Drinking was enhanced dose-dependently at 0.1-3 pmol.kg(-1).min(-1) of AM2 and AM5, matching the potency and efficacy of angiotensin II (ANG II), the most potent dipsogenic hormone known thus far. AM2 and AM5 infusion also induced mild antidiuresis, while AM1 caused antinatriuresis. Additionally, AMs were injected into the third and fourth ventricles of conscious eels to assess their site of dipsogenic action. However, none of the AMs at 0.05-0.5 nmol induced drinking, while ANG II was highly dipsogenic. AM2 and ANG II injected into the third ventricle increased arterial pressure while AM5 decreased it in a dose-dependent manner, and both AM2 and AM5 decreased blood pressure when injected into the fourth ventricle. These data suggest that circulating AM2 and AM5 act on a target site in the brain that lacks the blood-brain barrier. Collectively, the present study showed that AM2 and AM5 are potent osmoregulatory hormones in the eel, and their actions imply involvement in seawater adaptation of this euryhaline species.


PLOS ONE | 2012

O2-filled swimbladder employs monocarboxylate transporters for the generation of O2 by lactate-induced root effect hemoglobin.

Takahiro Umezawa; Akira Kato; Maho Ogoshi; Kayoko Ookata; Keijiro Munakata; Yoko Yamamoto; Zinia Islam; Hiroyuki Doi; Michael F. Romero; Shigehisa Hirose

The swimbladder volume is regulated by O2 transfer between the luminal space and the blood In the swimbladder, lactic acid generation by anaerobic glycolysis in the gas gland epithelial cells and its recycling through the rete mirabile bundles of countercurrent capillaries are essential for local blood acidification and oxygen liberation from hemoglobin by the “Root effect.” While O2 generation is critical for fish flotation, the molecular mechanism of the secretion and recycling of lactic acid in this critical process is not clear. To clarify molecules that are involved in the blood acidification and visualize the route of lactic acid movement, we analyzed the expression of 17 members of the H+/monocarboxylate transporter (MCT) family in the fugu genome and found that only MCT1b and MCT4b are highly expressed in the fugu swimbladder. Electrophysiological analyses demonstrated that MCT1b is a high-affinity lactate transporter whereas MCT4b is a low-affinity/high-conductance lactate transporter. Immunohistochemistry demonstrated that (i) MCT4b expresses in gas gland cells together with the glycolytic enzyme GAPDH at high level and mediate lactic acid secretion by gas gland cells, and (ii) MCT1b expresses in arterial, but not venous, capillary endothelial cells in rete mirabile and mediates recycling of lactic acid in the rete mirabile by solute-specific transcellular transport. These results clarified the mechanism of the blood acidification in the swimbladder by spatially organized two lactic acid transporters MCT4b and MCT1b.


Current Protein & Peptide Science | 2013

Exploring New CGRP Family Peptides and their Receptors in Vertebrates

Yoshio Takei; Maho Ogoshi; Shigenori Nobata

Vertebrates have expanded their habitats from aquatic to terrestrial environments, which has accompanied the evolution of cardiovascular and osmoregulatory hormones. Specifically, mammals have developed mechanisms to maintain high blood pressure and blood volume, while extant fishes have developed hypotensive and Na-extruding mechanisms to adapt to the marine environment where they underwent a vast diversification. The CGRP family is one of the hormone systems that decrease blood pressure and blood volume. Within the CGRP family of teleost fishes, we found that adrenomedullins (AMs) have diversified and five paralogs (AM1-5) form an independent subfamily. Based on this discovery in fishes, we found AM2 and AM5 in mammals. In mammalian species that have AM2 and/or AM5, the peptides assume greater importance in the case of pathophysiological disturbances in pressure and fluid balance such as hypertension and cardiac and renal failure. In addition, novel functions of AM peptides have been suggested by the discovery of AM2 and AM5 in mammals. Current research on the CGRP family is focused on the identification of new receptors for AM2/AM5 and the establishment of AM2 knockout mice, which will enable new developments in the basic and clinical research on this intriguing hormone family. Importantly, comparative fish studies can contribute to new developments in our understanding of the function of the AM peptides.


Archive | 2010

Molecular and Functional Evolution of the Adrenomedullin Family in Vertebrates: What Do Fish Studies Tell Us?

Yoshio Takei; Maho Ogoshi; Marty Kwok-Shing Wong; Shigenori Nobata

Adrenomedullin (AM) comprises a unique family of five paralogous peptides (AM1, 2, 3, 4 and 5) in teleost fish, of which AM1 is an ortholog of mammalian AM, and AM1/4 and AM2/3 were produced at the teleost-specific whole genome duplication. Therefore, CGRP, amylin, AM1, AM2 and AM5 existed when ray-finned fish and lobe-finned fish (leading to tetrapods) were diverged. Based on this finding, we discovered novel AM2 and AM5 in mammals. In addition, comparative genomic analyses based on fish studies delineated an evolutionary history of the CGRP family of peptides in vertebrates. As a first chapter of this volume, we initially propose an idea of how the CGRP family, including multiple AM peptides, have been organized during the course of vertebrate evolution. We will also show how comparative fish studies can contribute to general and clinical endocrinology by providing new insights into the molecule and function of the CGRP family throughout vertebrate species.


Biochemical and Biophysical Research Communications | 2003

Identification of a novel adrenomedullin gene family in teleost fish.

Maho Ogoshi; Koji Inoue; Yoshio Takei

Collaboration


Dive into the Maho Ogoshi's collaboration.

Top Co-Authors

Avatar

Yoshio Takei

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Kato

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Shigehisa Hirose

Tokyo Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge