Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mai Shiokawa is active.

Publication


Featured researches published by Mai Shiokawa.


Journal of Virology | 2012

Establishment of a Novel Permissive Cell Line for the Propagation of Hepatitis C Virus by Expression of MicroRNA miR122

Hiroto Kambara; Takasuke Fukuhara; Mai Shiokawa; Chikako Ono; Yuri Ohara; Wataru Kamitani; Yoshiharu Matsuura

ABSTRACT The robust cell culture systems for hepatitis C virus (HCV) are limited to those using cell culture-adapted clones (HCV in cell culture [HCVcc]) and cells derived from the human hepatoma cell line Huh7. However, accumulating data suggest that host factors, including innate immunity and gene polymorphisms, contribute to the variation in host response to HCV infection. Therefore, the existing in vitro systems for HCV propagation are not sufficient to elucidate the life cycle of HCV. A liver-specific microRNA, miR122, has been shown to participate in the efficient replication of HCV. In this study, we examined the possibility of establishing a new permissive cell line for HCV propagation by the expression of miR122. A high level of miR122 was expressed by a lentiviral vector placed into human liver cell lines at a level comparable to the endogenous level in Huh7 cells. Among the cell lines that we examined, Hep3B cells stably expressing miR122 (Hep3B/miR122) exhibited a significant enhancement of HCVcc propagation. Surprisingly, the levels of production of infectious particles in Hep3B/miR122 cells upon infection with HCVcc were comparable to those in Huh7 cells. Furthermore, a line of “cured” cells, established by elimination of HCV RNA from the Hep3B/miR122 replicon cells, exhibited an enhanced expression of miR122 and a continuous increase of infectious titers of HCVcc in every passage. The establishment of the new permissive cell line for HCVcc will have significant implications not only for basic HCV research but also for the development of new therapeutics.


Journal of Virology | 2012

Expression of MicroRNA miR-122 Facilitates an Efficient Replication in Nonhepatic Cells upon Infection with Hepatitis C Virus

Takasuke Fukuhara; Hiroto Kambara; Mai Shiokawa; Chikako Ono; Hiroshi Katoh; Eiji Morita; Daisuke Okuzaki; Yoshihiko Maehara; Kazuhiko Koike; Yoshiharu Matsuura

ABSTRACT Hepatitis C virus (HCV) is one of the most common etiologic agents of chronic liver diseases, including liver cirrhosis and hepatocellular carcinoma. In addition, HCV infection is often associated with extrahepatic manifestations (EHM), including mixed cryoglobulinemia and non-Hodgkins lymphoma. However, the mechanisms of cell tropism of HCV and HCV-induced EHM remain elusive, because in vitro propagation of HCV has been limited in the combination of cell culture-adapted HCV (HCVcc) and several hepatic cell lines. Recently, a liver-specific microRNA called miR-122 was shown to facilitate the efficient propagation of HCVcc in several hepatic cell lines. In this study, we evaluated the importance of miR-122 on the replication of HCV in nonhepatic cells. Among the nonhepatic cell lines expressing functional HCV entry receptors, Hec1B cells derived from human uterus exhibited a low level of replication of the HCV genome upon infection with HCVcc. Exogenous expression of miR-122 in several cells facilitates efficient viral replication but not production of infectious particles, probably due to the lack of hepatocytic lipid metabolism. Furthermore, expression of mutant miR-122 carrying a substitution in a seed domain was required for efficient replication of mutant HCVcc carrying complementary substitutions in miR-122-binding sites, suggesting that specific interaction between miR-122 and HCV RNA is essential for the enhancement of viral replication. In conclusion, although miR-122 facilitates efficient viral replication in nonhepatic cells, factors other than miR-122, which are most likely specific to hepatocytes, are required for HCV assembly.


Journal of Virology | 2010

Involvement of Ceramide in the Propagation of Japanese Encephalitis Virus

Hideki Tani; Mai Shiokawa; Yuuki Kaname; Hiroto Kambara; Yoshio Mori; Takayuki Abe; Kohji Moriishi; Yoshiharu Matsuura

ABSTRACT Japanese encephalitis virus (JEV) is a mosquito-borne RNA virus and one of the most important flaviviruses in the medical and veterinary fields. Although cholesterol has been shown to participate in both the entry and replication steps of JEV, the mechanisms of infection, including the cellular receptors of JEV, remain largely unknown. To clarify the infection mechanisms of JEV, we generated pseudotype (JEVpv) and recombinant (JEVrv) vesicular stomatitis viruses bearing the JEV envelope protein. Both JEVpv and JEVrv exhibited high infectivity for the target cells, and JEVrv was able to propagate and form foci as did authentic JEV. Anti-JEV envelope antibodies neutralized infection of the viruses. Treatment of cells with inhibitors for vacuolar ATPase and clathrin-mediated endocytosis reduced the infectivity of JEVpv, suggesting that JEVpv enters cells via pH- and clathrin-dependent endocytic pathways. Although treatment of the particles of JEVpv, JEVrv, and JEV with cholesterol drastically reduced the infectivity as previously reported, depletion of cholesterol from the particles by treatment with methyl β-cyclodextrin enhanced infectivity. Furthermore, treatment of cells with sphingomyelinase (SMase), which hydrolyzes membrane-bound sphingomyelin to ceramide, drastically enhanced infection with JEVpv and propagation of JEVrv, and these enhancements were inhibited by treatment with an SMase inhibitor or C6-ceramide. These results suggest that ceramide plays crucial roles in not only entry but also egress processes of JEV, and they should assist in the clarification of JEV propagation and the development of novel therapeutics against diseases caused by infection with flaviviruses.


PLOS Pathogens | 2014

Amphipathic α-Helices in Apolipoproteins Are Crucial to the Formation of Infectious Hepatitis C Virus Particles

Takasuke Fukuhara; Masami Wada; Shota Nakamura; Chikako Ono; Mai Shiokawa; Satomi Yamamoto; Takashi Motomura; Toru Okamoto; Daisuke Okuzaki; Masahiro Yamamoto; Izumu Saito; Takaji Wakita; Kazuhiko Koike; Yoshiharu Matsuura

Apolipoprotein B (ApoB) and ApoE have been shown to participate in the particle formation and the tissue tropism of hepatitis C virus (HCV), but their precise roles remain uncertain. Here we show that amphipathic α-helices in the apolipoproteins participate in the HCV particle formation by using zinc finger nucleases-mediated apolipoprotein B (ApoB) and/or ApoE gene knockout Huh7 cells. Although Huh7 cells deficient in either ApoB or ApoE gene exhibited slight reduction of particles formation, knockout of both ApoB and ApoE genes in Huh7 (DKO) cells severely impaired the formation of infectious HCV particles, suggesting that ApoB and ApoE have redundant roles in the formation of infectious HCV particles. cDNA microarray analyses revealed that ApoB and ApoE are dominantly expressed in Huh7 cells, in contrast to the high level expression of all of the exchangeable apolipoproteins, including ApoA1, ApoA2, ApoC1, ApoC2 and ApoC3 in human liver tissues. The exogenous expression of not only ApoE, but also other exchangeable apolipoproteins rescued the infectious particle formation of HCV in DKO cells. In addition, expression of these apolipoproteins facilitated the formation of infectious particles of genotype 1b and 3a chimeric viruses. Furthermore, expression of amphipathic α-helices in the exchangeable apolipoproteins facilitated the particle formation in DKO cells through an interaction with viral particles. These results suggest that amphipathic α-helices in the exchangeable apolipoproteins play crucial roles in the infectious particle formation of HCV and provide clues to the understanding of life cycle of HCV and the development of novel anti-HCV therapeutics targeting for viral assembly.


Journal of Virology | 2010

Acquisition of complement resistance through incorporation of CD55/decay-accelerating factor into viral particles bearing baculovirus GP64.

Yuuki Kaname; Hideki Tani; Chikako Kataoka; Mai Shiokawa; Shuhei Taguwa; Takayuki Abe; Kohji Moriishi; Taroh Kinoshita; Yoshiharu Matsuura

ABSTRACT A major obstacle to gene transduction by viral vectors is inactivation by human complement in vivo. One way to overcome this is to incorporate complement regulatory proteins, such as CD55/decay accelerating factor (DAF), into viral particles. Lentivirus vectors pseudotyped with the baculovirus envelope protein GP64 have been shown to acquire more potent resistance to serum inactivation and longer transgene expression than those pseudotyped with the vesicular stomatitis virus (VSV) envelope protein G. However, the molecular mechanisms underlying resistance to serum inactivation in pseudotype particles bearing the GP64 have not been precisely elucidated. In this study, we generated pseudotype and recombinant VSVs bearing the GP64. Recombinant VSVs generated in human cell lines exhibited the incorporation of human DAF in viral particles and were resistant to serum inactivation, whereas those generated in insect cells exhibited no incorporation of human DAF and were sensitive to complement inactivation. The GP64 and human DAF were detected on the detergent-resistant membrane and were coprecipitated by immunoprecipitation analysis. A pseudotype VSV bearing GP64 produced in human DAF knockdown cells reduced resistance to serum inactivation. In contrast, recombinant baculoviruses generated in insect cells expressing human DAF or carrying the human DAF gene exhibited resistance to complement inactivation. These results suggest that the incorporation of human DAF into viral particles by interacting with baculovirus GP64 is involved in the acquisition of resistance to serum inactivation.


Archives of Virology | 2015

Full genome analysis of bovine astrovirus from fecal samples of cattle in Japan: identification of possible interspecies transmission of bovine astrovirus

Makoto Nagai; Tsutomu Omatsu; Hiroshi Aoki; Konosuke Otomaru; Takehiko Uto; Motoya Koizumi; Fujiko Minami-Fukuda; Hikaru Takai; Toshiaki Murakami; Tsuneyuki Masuda; Hiroshi Yamasato; Mai Shiokawa; Shinobu Tsuchiaka; Yuki Naoi; Kaori Sano; Sachiko Okazaki; Yukie Katayama; Mami Oba; Tetsuya Furuya; Junsuke Shirai; Tetsuya Mizutani

A viral metagenomics approach was used to investigate fecal samples of Japanese calves with and without diarrhea. Of the different viral pathogens detected, read counts gave nearly complete astrovirus-related RNA sequences in 15 of the 146 fecal samples collected in three distinct areas (Hokkaido, Ishikawa, and Kagoshima Prefectures) between 2009 and 2015. Due to the lack of genetic information about bovine astroviruses (BoAstVs) in Japan, these sequences were analyzed in this study. Nine of the 15 Japanese BoAstVs were closely related to Chinese BoAstVs and clustered into a lineage (tentatively named lineage 1) in all phylogenetic trees. Three of 15 strains were phylogenetically separate from lineage 1, showing low sequence identities, and clustered instead with an American strain isolated from cattle with respiratory disease (tentatively named lineage 2). Interestingly, two of 15 strains clustered with lineage 1 in the open reading frame (ORF)1a and ORF1b regions, while they clustered with lineage 2 in the ORF2 region. Remarkably, one of 15 strains exhibited low amino acid sequence similarity to other BoAstVs and was clustered separately with porcine astrovirus type 5 in all trees, and ovine astrovirus in the ORF2 region, suggesting past interspecies transmission.


PLOS Pathogens | 2016

Lipoprotein Receptors Redundantly Participate in Entry of Hepatitis C Virus

Satomi Yamamoto; Takasuke Fukuhara; Chikako Ono; Kentaro Uemura; Yukako Kawachi; Mai Shiokawa; Hiroyuki Mori; Masami Wada; Ryoichi Shima; Toru Okamoto; Nobuhiko Hiraga; Ryosuke Suzuki; Kazuaki Chayama; Takaji Wakita; Yoshiharu Matsuura

Scavenger receptor class B type 1 (SR-B1) and low-density lipoprotein receptor (LDLR) are known to be involved in entry of hepatitis C virus (HCV), but their precise roles and their interplay are not fully understood. In this study, deficiency of both SR-B1 and LDLR in Huh7 cells was shown to impair the entry of HCV more strongly than deficiency of either SR-B1 or LDLR alone. In addition, exogenous expression of not only SR-B1 and LDLR but also very low-density lipoprotein receptor (VLDLR) rescued HCV entry in the SR-B1 and LDLR double-knockout cells, suggesting that VLDLR has similar roles in HCV entry. VLDLR is a lipoprotein receptor, but the level of its hepatic expression was lower than those of SR-B1 and LDLR. Moreover, expression of mutant lipoprotein receptors incapable of binding to or uptake of lipid resulted in no or slight enhancement of HCV entry in the double-knockout cells, suggesting that binding and/or uptake activities of lipid by lipoprotein receptors are essential for HCV entry. In addition, rescue of infectivity in the double-knockout cells by the expression of the lipoprotein receptors was not observed following infection with pseudotype particles bearing HCV envelope proteins produced in non-hepatic cells, suggesting that lipoproteins associated with HCV particles participate in the entry through their interaction with lipoprotein receptors. Buoyant density gradient analysis revealed that HCV utilizes these lipoprotein receptors in a manner dependent on the lipoproteins associated with HCV particles. Collectively, these results suggest that lipoprotein receptors redundantly participate in the entry of HCV.


Journal of Virology | 2014

Novel Permissive Cell Lines for Complete Propagation of Hepatitis C Virus

Mai Shiokawa; Takasuke Fukuhara; Chikako Ono; Satomi Yamamoto; Toru Okamoto; Noriyuki Watanabe; Takaji Wakita; Yoshiharu Matsuura

ABSTRACT Hepatitis C virus (HCV) is a major etiologic agent of chronic liver diseases. Although the HCV life cycle has been clarified by studying laboratory strains of HCV derived from the genotype 2a JFH-1 strain (cell culture-adapted HCV [HCVcc]), the mechanisms of particle formation have not been elucidated. Recently, we showed that exogenous expression of a liver-specific microRNA, miR-122, in nonhepatic cell lines facilitates efficient replication but not particle production of HCVcc, suggesting that liver-specific host factors are required for infectious particle formation. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified liver-derived JHH-4 cells and stomach-derived FU97 cells, which express liver-specific host factors comparable to Huh7 cells. These cell lines permit not only replication of HCV RNA but also particle formation upon infection with HCVcc, suggesting that hepatic differentiation participates in the expression of liver-specific host factors required for HCV propagation. HCV inhibitors targeting host and viral factors exhibited different antiviral efficacies between Huh7 and FU97 cells. Furthermore, FU97 cells exhibited higher susceptibility for propagation of HCVcc derived from the JFH-2 strain than Huh7 cells. These results suggest that hepatic differentiation participates in the expression of liver-specific host factors required for complete propagation of HCV. IMPORTANCE Previous studies have shown that liver-specific host factors are required for efficient replication of HCV RNA and formation of infectious particles. In this study, we screened human cancer cell lines for expression of the liver-specific α-fetoprotein by using a cDNA array database and identified novel permissive cell lines for complete propagation of HCVcc without any artificial manipulation. In particular, gastric cancer-derived FU97 cells exhibited a much higher susceptibility to HCVcc/JFH-2 infection than observed in Huh7 cells, suggesting that FU97 cells would be useful for further investigation of the HCV life cycle, as well as the development of therapeutic agents for chronic hepatitis C.


PLOS Pathogens | 2017

Host-derived apolipoproteins play comparable roles with viral secretory proteins Erns and NS1 in the infectious particle formation of Flaviviridae

Takasuke Fukuhara; Tomokazu Tamura; Chikako Ono; Mai Shiokawa; Hiroyuki Mori; Kentaro Uemura; Satomi Yamamoto; Takeshi Kurihara; Toru Okamoto; Ryosuke Suzuki; Kentaro Yoshii; Takeshi Kurosu; Manabu Igarashi; Hiroshi Aoki; Yoshihiro Sakoda; Yoshiharu Matsuura

Amphipathic α-helices of exchangeable apolipoproteins have shown to play crucial roles in the formation of infectious hepatitis C virus (HCV) particles through the interaction with viral particles. Among the Flaviviridae members, pestivirus and flavivirus possess a viral structural protein Erns or a non-structural protein 1 (NS1) as secretory glycoproteins, respectively, while Hepacivirus including HCV has no secretory glycoprotein. In case of pestivirus replication, the C-terminal long amphipathic α-helices of Erns are important for anchoring to viral membrane. Here we show that host-derived apolipoproteins play functional roles similar to those of virally encoded Erns and NS1 in the formation of infectious particles. We examined whether Erns and NS1 could compensate for the role of apolipoproteins in particle formation of HCV in apolipoprotein B (ApoB) and ApoE double-knockout Huh7 (BE-KO), and non-hepatic 293T cells. We found that exogenous expression of either Erns or NS1 rescued infectious particle formation of HCV in the BE-KO and 293T cells. In addition, expression of apolipoproteins or NS1 partially rescued the production of infectious pestivirus particles in cells upon electroporation with an Erns-deleted non-infectious RNA. As with exchangeable apolipoproteins, the C-terminal amphipathic α-helices of Erns play the functional roles in the formation of infectious HCV or pestivirus particles. These results strongly suggest that the host- and virus-derived secretory glycoproteins have overlapping roles in the viral life cycle of Flaviviridae, especially in the maturation of infectious particles, while Erns and NS1 also participate in replication complex formation and viral entry, respectively. Considering the abundant hepatic expression and liver-specific propagation of these apolipoproteins, HCV might have evolved to utilize them in the formation of infectious particles through deletion of a secretory viral glycoprotein gene.


Virus Research | 2015

Identification and complete genome analysis of a novel bovine picornavirus in Japan.

Makoto Nagai; Tsutomu Omatsu; Hiroshi Aoki; Yoshihiro Kaku; Graham J. Belsham; Kei Haga; Yuki Naoi; Kaori Sano; Moeko Umetsu; Mai Shiokawa; Shinobu Tsuchiaka; Tetsuya Furuya; Sachiko Okazaki; Yukie Katayama; Mami Oba; Junsuke Shirai; Kazuhiko Katayama; Tetsuya Mizutani

Abstract We identified novel viruses in feces from cattle with diarrhea collected in 2009 in Hokkaido Prefecture, Japan, by using a metagenomics approach and determined the (near) complete sequences of the virus. Sequence analyses revealed that they had a standard picornavirus genome organization, i.e. 5′ untranslated region (UTR) - L- P1 (VP4- VP3- VP2- VP1) - P2 (2A- 2B- 2C) - P3 (3A- 3B- 3C-3D) - 3′UTR- poly(A). They are closely related to other unclassified Chinese picornaviruses; bat picornaviruses group 1–3, feline picornavirus, and canine picornavirus, sharing 45.4–51.4% (P1), 38.0–44.9% (P2), and 49.6–53.3% (P3) amino acid identities, respectively. The phylogenetic analyses and detailed genome characterization showed that they, together with the unclassified Chinese picornaviruses, grouped as a cluster for the P1, 2C, 3CD and VP1 coding regions. These viruses had conserved features (e.g. predicted protein cleavage sites, presence of a leader protein, 2A, 2C, 3C, and 3D functional domains), suggesting they have a common ancestor. Reverse-transcription-PCR assays, using specific primers designed from the 5′UTR sequence of these viruses, showed that 23.0% (20/87) of fecal samples from cattle with diarrhea were positive, indicating the prevalence of these picornavirus in the Japanese cattle population in Hokkaido Prefecture. However, further studies are needed to investigate the pathogenic potential and etiological role of these viruses in cattle.

Collaboration


Dive into the Mai Shiokawa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroshi Aoki

Nippon Veterinary and Life Science University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tetsuya Mizutani

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Junsuke Shirai

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Makoto Nagai

Tokyo University of Agriculture and Technology

View shared research outputs
Top Co-Authors

Avatar

Mami Oba

Tokyo University of Agriculture and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge