Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tetsuya Mizutani is active.

Publication


Featured researches published by Tetsuya Mizutani.


Biochemical Journal | 2003

Zinc-fingers and homeoboxes (ZHX) 2, a novel member of the ZHX family, functions as a transcriptional repressor.

Hiroko Kawata; Kazuya Yamada; Zhangfei Shou; Tetsuya Mizutani; Takashi Yazawa; Miki Yoshino; Toshio Sekiguchi; Takashi Kajitani; Kaoru Miyamoto

Zinc-fingers and homeoboxes (ZHX) 1 is a transcription factor that interacts with the activation domain of the A subunit of nuclear factor-Y (NF-YA). Using a yeast two-hybrid system, a novel ubiquitous transcription factor ZHX2 as a ZHX1-interacting protein was cloned. ZHX2 consists of 837 amino acid residues and contains two zinc-finger motifs and five homeodomains (HDs) as well as ZHX1. The mRNA is expressed among various tissues. ZHX2 not only forms a heterodimer with ZHX1, but also forms a homodimer. Moreover, ZHX2 interacts with the activation domain of NF-YA. Further analysis revealed that ZHX2 is a transcriptional repressor that is localized in the nuclei. Since ZHX2 shares a number of properties in common with ZHX1, we conclude that all these come under the ZHX family. The minimal functional domains of ZHX2 were then characterized. The dimerization domain with both ZHX1 and ZHX2 is the region containing HD1, the domain that interacts with NF-YA is the HD1 to HD2 region, the repressor domain is the HD1 to a proline-rich region. Lastly, using an immunoprecipitation assay, we showed that ZHX2 intrinsically interacts with NF-YA in HEK-293 cells and that ZHX2 represses the promoter activity of the cdc25C gene stimulated by NF-Y in Drosophila Schneider line 2 cells. Thus the ZHX family of proteins may participate in the expression of a number of NF-Y-regulated genes via a more organized transcription network.


Biology of Reproduction | 2000

A Role of Insulin-Like Growth Factor I for Follicle-Stimulating Hormone Receptor Expression in Rat Granulosa Cells

Takashi Minegishi; Takashi Hirakawa; Hiroshi Kishi; Kazuko Abe; Yumiko Abe; Tetsuya Mizutani; Kaoru Miyamoto

Abstract The present study was undertaken to identify the mechanisms underlying the effect of insulin-like growth factor I (IGF-I) on FSH receptor (FSHR) in rat granulosa cells. Treatment with FSH produced a substantial increase in FSHR mRNA level, as was expected, while concurrent treatment with increasing concentrations of IGF-I brought about dose-dependent increases in FSH-induced FSHR mRNA, with a maximal response 2.8-fold greater than that induced by FSH alone. IGF-I, either alone or in combination with FSH, did not affect intracellular cAMP levels, whereas it enhanced the effect of 8-bromo (Br)-cAMP on FSHR mRNA production. Taken together, these findings suggest that the ability of IGF-I to enhance FSH action concerning the induction of FSHR is exerted at sites distal to cAMP generation. We then investigated whether the effect of IGF-I and FSH on FSHR mRNA levels was the result of increased transcription and/or altered mRNA stability. The rates of FSHR mRNA gene transcription, assessed by nuclear run-on transcription assay, were not increased by the addition of IGF-I. On the other hand, the decay curves for the 2.4-kilobase (kb) FSHR mRNA transcript in primary granulosa cells significantly altered the slope of the FSHR mRNA decay curve in the presence of IGF-I and increased the half-life of the FSHR mRNA transcript. These data suggest a possible role for changes in FSHR mRNA stability in the IGF-I-induced regulation of FSHR in rat granulosa cells. Treatment with activin produced a substantial increase in FSHR mRNA level, as was expected, and concurrent treatment with IGF-I did not affect activin-induced FSHR mRNA. Our data suggest that the IGF-I effect on FSHR expression is related to cAMP production induced by FSH and may maintain FSHR mRNA level because of prolonged FSHR mRNA stability.


Molecular Endocrinology | 2010

PPAR-γ Coactivator-1α Regulates Progesterone Production in Ovarian Granulosa Cells with SF-1 and LRH-1

Takashi Yazawa; Yoshihiko Inaoka; Reiko Okada; Tetsuya Mizutani; Yukiko Yamazaki; Yoko Usami; Mayu Kuribayashi; Makoto Orisaka; Akihiro Umezawa; Kaoru Miyamoto

Previously, we demonstrated that bone marrow-derived mesenchymal stem cells (MSCs) differentiate into steroidogenic cells such as Leydig and adrenocortical cells by the introduction of steroidogenic factor-1 (SF-1) and treatment with cAMP. In this study, we employed the same approach to differentiate umbilical cord blood (UCB)-derived MSCs. Despite UCB-MSCs differentiating into steroidogenic cells, they exhibited characteristics of granulosa-luteal-like cells. We found that peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) was expressed and further induced by cAMP stimulation in UCB-MSCs. Consistent with these results, tissue-specific expression of Pgc-1alpha was observed in rat ovarian granulosa cells. PGC-1alpha binds to the NR5A family [SF-1 and liver receptor homolog-1 (LRH-1)] of proteins and markedly enhances their transcriptional activities. Reporter assays revealed that PGC-1alpha activated the promoter activities of SF-1 and LRH-1 target genes. Infection of KGN cells (a human cell line derived from granulosa cells) with adenoviruses expressing PGC-1alpha resulted in the induction of steroidogenesis-related genes and stimulation of progesterone production. PGC-1alpha also induced SF-1 and LRH-1, with the latter induced to a greater extent. Knockdown of Pgc-1alpha in cultured rat granulosa cells resulted in attenuation of gene expression as well as progesterone production. Transactivation of the NR5A family by PGC-1alpha was repressed by Dax-1. PGC-1alpha binds to the activation function 2 domain of NR5A proteins via its consensus LXXLL motif. These results indicate that PGC-1alpha is involved in progesterone production in ovarian granulosa cells by potentiating transcriptional activities of the NR5A family proteins.


Endocrinology | 2009

Liver Receptor Homolog-1 Regulates the Transcription of Steroidogenic Enzymes and Induces the Differentiation of Mesenchymal Stem Cells into Steroidogenic Cells

Takashi Yazawa; Yoshihiko Inanoka; Tetsuya Mizutani; Mayu Kuribayashi; Akihiro Umezawa; Kaoru Miyamoto

Steroidogenic factor-1 (SF-1, also known as Ad4BP) has been demonstrated to be a primary transcriptional regulator of steroidogenic-related genes. However, mRNA for liver receptor homolog-1 (LRH-1), which together with SF-1, belongs to the NR5A nuclear receptor family, is expressed at much higher levels than SF-1 mRNA in the human gonad. In our previous studies, we demonstrated that SF-1 induced the differentiation of bone marrow-derived mesenchymal stem cells (MSCs) into steroidogenic cells such as Leydig or adrenocortical cells. The introduction of LRH-1 into human MSCs (hMSCs) with the aid of cAMP also induced the expression of steroidogenic enzymes, including CYP17, and their differentiation into steroid hormone-producing cells. Promoter analysis, EMSA, and chromatin immunoprecipitation assay using LRH-1-transduced hMSCs indicated that three LRH-1 binding sites were responsible for CYP17 transactivation. Immunohistochemical studies showed that LRH-1 protein was expressed in human Leydig cells. The CYP17 promoter region was highly methylated in hMSCs, whereas it was demethylated by the introduction of LRH-1 and cAMP treatment. These results indicate that LRH-1 could represent another key regulator of the steroidogenic lineage in MSCs and play a vital role in steroid hormone production in human Leydig cells.


Biochemical Journal | 2003

Analysis of zinc-fingers and homeoboxes (ZHX)-1-interacting proteins: molecular cloning and characterization of a member of the ZHX family, ZHX3

Kazuya Yamada; Hiroko Kawata; Zhangfei Shou; Satoko Hirano; Tetsuya Mizutani; Takashi Yazawa; Toshio Sekiguchi; Miki Yoshino; Takashi Kajitani; Kaoru Miyamoto

Human zinc-fingers and homeoboxes (ZHX) 1, a transcriptional repressor, was originally cloned as an interacting protein with the activation domain of the A subunit of nuclear factor-Y (NF-YA). As the first step in investigating the mechanism by which ZHX1 acts as a transcriptional repressor, we conducted a search of ZHX1-interacting proteins using a yeast two-hybrid system. Nuclear proteins such as ZHX1, transcriptional co-factors and DNA-binding proteins, zyxin, androgen-induced aldose reductase and eleven-nineteen lysine-rich leukaemia gene, as well as some unknown proteins, were cloned. Molecular cloning and determination of the nucleotide sequence of the full-length cDNA encoding a novel protein revealed that it consists of 956 amino acid residues and contains two zinc-finger (Znf) motifs and five homeodomains (HDs) as well as ZHX1. We concluded that the protein forms the ZHX family with ZHX1 and denoted it ZHX3. ZHX3 not only dimerizes with both ZHX1 and ZHX3, but also interacts with the activation domain of the NF-YA. Further analysis revealed that ZHX3 is a ubiquitous transcriptional repressor that is localized in nuclei and functions as a dimer. Lastly, the dimerization domain, the interaction domain with NF-YA, and the repressor domain are mapped to a region including the HD1 region, and two nuclear localization signals are mapped to the N-terminal through Znf1 and the HD2 region, respectively.


Biology of Reproduction | 2002

Early Growth Response Gene-1 Regulates the Expression of the Rat Luteinizing Hormone Receptor Gene

Miki Yoshino; Tetsuya Mizutani; Kazuya Yamada; Megumi Tsuchiya; Takashi Minegishi; Takashi Yazawa; Hiroko Kawata; Toshio Sekiguchi; Takashi Kajitani; Kaoru Miyamoto

Abstract LH receptor gene expression is primarily regulated via specific interactions of trans-acting proteins and cis-acting DNA sequences in the upstream region of the gene. In this study, we report, using luciferase assays, that the region between −171 and −137 base pairs (bp) is essential for basal expression of the rat LH receptor gene. To identify factors that interact with the region between −171 and −137 bp and regulate expression of the gene, a rat granulosa cell cDNA library was screened using a yeast one-hybrid system. A positive clone, isolated by the screening, encodes a transcription factor early growth response gene-1 (Egr-1). To determine the sequence to which Egr-1 protein binds, electrophoretic mobility shift assay (EMSA) was employed. The Egr-1 protein was produced by an in vitro transcription/translation system using a full-length rat Egr-1 cDNA. The upstream region between −171 and −137 bp contains 2 overlapping Egr-1 consensus sequences. The EMSA revealed that Egr-1 binds independently to both sites. The overexpression of Egr-1 in MA-10 cells caused an approximately 2-fold increase in reporter luciferase activity. However, no induction of the luciferase activity was observed when luciferase constructs that lacked or had mutations in either or both of the Egr-1 sites were used, indicating that Egr-1 positively regulates LH receptor gene expression. In differentiated granulosa cells that had been pretreated with FSH for 48 h, the levels of both mRNA and Egr-1 protein were induced by hCG or cAMP, reaching maximal levels approximately 1.5 h after treatment and then returning to basal levels 8 h thereafter. No Egr-1 mRNA or protein was detected in undifferentiated granulosa cells, even after stimulation with 8-bromoadenosine-cAMP. These results suggest that Egr-1 functions only in luteinized granulosa cells after stimulation with hCG or cAMP. In conclusion, the findings demonstrate that Egr-1 actually binds to the regulatory upstream region of the LH receptor gene and positively regulates receptor gene expression. In addition, Egr-1 expression was observed only in luteinized granulosa cells after stimulation with hCG or cAMP. The present study provides further support to the hypothesis that Egr-1 plays important roles in the pituitary-gonadal axis.


Biology of Reproduction | 2006

Granulosa Cells Promote Differentiation of Cortical Stromal Cells into Theca Cells in the Bovine Ovary

Makoto Orisaka; Kimihisa Tajima; Tetsuya Mizutani; Kaoru Miyamoto; Benjamin K. Tsang; Shin Fukuda; Yoshio Yoshida; Fumikazu Kotsuji

Abstract Formation of a theca cell (TC) layer is an important physiologic event that occurs during early follicular development. Nevertheless, little is known concerning the nature and regulation of the formation of the TC layer during follicular growth. Using an established coculture system in this study, we examined the hypothesis that stromal cells differentiate into TCs during early follicular development and that this process involves interaction with granulosa cells (GCs). Ovarian stromal cells from the bovine ovarian cortex (SC) and medulla (SM) were cultured with or without GCs from small antral follicles. The presence of GCs increased the number of lipid droplets and mitochondria, and it stimulated androstenedione production in SC and SM. However, luteinizing hormone/choriogonadotropin receptor (LHCGR) mRNA abundance and hCG-induced cAMP and androstenedione production were increased in SC but not in SM by the presence of GCs. The present results indicate that GCs are involved in the functional differentiation and the acquisition of LH responsiveness in stromal cells of the ovarian cortex. We suggest that GC-SC interaction is important in the formation of the TC layer during early follicular development, although the nature of this interaction remains to be determined.


Molecular Reproduction and Development | 2008

Regulation of NGFI-B/Nur77 gene expression in the rat ovary and in leydig tumor cells MA-10.

Yoshihiko Inaoka; Takashi Yazawa; Miki Uesaka; Tetsuya Mizutani; Kazuya Yamada; Kaoru Miyamoto

NR4A1, also called NGFI‐B in the rat, Nur77 in the mouse and TR3 in humans, belongs to the orphan nuclear steroid hormone receptor superfamily and is one of the immediate‐early genes. In the endocrine organs, including the gonads, NGFI‐B/Nur77 gene expression is rapidly induced by pituitary hormones. NGFI‐B/Nur77 expression was found to be rapidly reduced by an estrogenic endocrine disrupter, diethylstilbestrol (DES) in theca interna cells of immature rat ovaries. DES treatment also triggered a rapid decrease of serum luteinizing hormone (LH) levels, suggesting that DES acts on the hypothalamo–pituitary axis to suppress LH secretion from the pituitary. The transcriptional regulation of NGFI‐B/Nur77 by LH/human chorionic gonadotropin (hCG) or 8‐bromoadenosine 3′–5′‐cyclic monophosphate (8 Br‐cAMP) was examined in mouse Leydig tumor cells MA‐10. Luciferase assays using NGFI‐B/Nur77 promoter constructs and electric mobility shift assays (EMSA) showed that NGFI‐B/Nur77 gene expression was mediated through three of the four activator protein‐1 (AP‐1)‐like sites, namely the −233 AP‐1, −213 AP‐1 and −69 AP‐1 sites adjacent to the transcription start site of the NGFI‐B/Nur77 promoter. We also demonstrated here that both the Jun family and cAMP‐responsive element binding (CREB) proteins bind to the −233 AP‐1 site, whereas the main binding protein to the −213 AP‐1 site was CREB, and Jun family protein to the −69 AP‐1 site, respectively. The rapid induction of NGFI‐B/Nur77 gene expression by LH/hCG in MA‐10 cells appears to be mediated by both CREB and Jun family proteins through the cAMP‐protein kinase A (PKA) pathway. Mol. Reprod. Dev. 75: 931–939, 2008.


Molecular and Cellular Endocrinology | 2013

Androgen/androgen receptor pathway regulates expression of the genes for cyclooxygenase-2 and amphiregulin in periovulatory granulosa cells☆

Takashi Yazawa; Shinya Kawabe; Masafumi Kanno; Tetsuya Mizutani; Yoshitaka Imamichi; Yunfeng Ju; Takehiro Matsumura; Yukiko Yamazaki; Yoko Usami; Mayu Kuribayashi; Masayuki Shimada; Takeshi Kitano; Akihiro Umezawa; Kaoru Miyamoto

It is well known that the androgen/androgen receptor (AR) pathway is involved in both male and female fertility in mammals. AR knockout female mice are reported to exhibit various abnormalities in follicle development, and a subfertile phenotype. In exogenous gonadotropin-induced superovulation, serum androgen levels were robustly elevated in female mice at the periovulatory stage after human chorionic gonadotropin (hCG) treatment. At this stage, ovarian AR proteins were strongly expressed in cumulus cells. Because these results suggested that the androgen/AR pathway is involved in ovulation, we investigated the expression of ovulation-related genes in the mouse ovary treated with the nonaromatizable androgen, 5α-dihydrotestosterone (DHT). DHT treatment induced the expression of the genes for cyclooxyganase-2 (Cox-2 or prostaglandin endoperoxidase synthase 2) and the epidermal growth factor-like factor, amphiregulin (Areg), in the ovary, whereas their hCG-induced expression was suppressed by the AR antagonist flutamide. These genes were also induced by DHT in AR-expressing primary granulosa and granulosa tumor-derived cells. Reporter assays, electrophoretic shift mobility assays and chromatin immunoprecipitation assays demonstrated that androgen response sequence(s) existing upstream of each gene were responsible for androgen responsiveness and were occupied by the AR in periovulatory granulosa cells. Our results suggest that the androgen/AR pathway is involved in the ovulatory process via expression of the Cox-2 and Areg genes in periovulatory granulosa cells.


Molecular and Cellular Endocrinology | 2011

Differentiation of mesenchymal stem cells and embryonic stem cells into steroidogenic cells using steroidogenic factor-1 and liver receptor homolog-1.

Takashi Yazawa; Shinya Kawabe; Yoshihiko Inaoka; Reiko Okada; Tetsuya Mizutani; Yoshitaka Imamichi; Yunfeng Ju; Yukiko Yamazaki; Yoko Usami; Mayu Kuribayashi; Akihiro Umezawa; Kaoru Miyamoto

Previously, we have demonstrated that mesenchymal stem cells could be differentiated into steroidogenic cells through steroidogenic factor-1 and 8bromo-cAMP treatment. Use of liver receptor homolog-1, another of the nuclear receptor 5A family nuclear receptors, with 8bromo-cAMP also resulted in the differentiation of human mesenchymal stem cells into steroid hormone-producing cells. The same approaches could not be applied to other undifferentiated cells such as embryonic stem cells or embryonal carcinoma cells, because the over-expression of the nuclear receptor 5A family is cytotoxic to these cells. We established embryonic stem cells carrying tetracycline-regulated steroidogenic factor-1 gene at the ROSA26 locus. The embryonic stem cells were first differentiated into a mesenchymal cell lineage by culturing on collagen IV-coated dishes and treating with pulse exposures of retinoic acid before expression of steroidogenic factor-1. Although the untreated embryonic stem cells could not be converted into steroidogenic cells by expression of steroidogenic factor-1 in the absence of leukemia inhibitory factor due to inability of the cells to survive, the differentiated cells could be successfully converted into steroidogenic cells when expression of steroidogenic factor-1 was induced. They exhibited characteristics of adrenocortical-like cells and produced a large amount of corticosterone. These results indicated that pluripotent stem cells could be differentiated into steroidogenic cells by the nuclear receptor 5A family of protein via the mesenchymal cell lineage. This approach may provide a source of cells for future gene therapy for diseases caused by steroidogenesis deficiencies.

Collaboration


Dive into the Tetsuya Mizutani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takashi Yazawa

Asahikawa Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge