Maicol A. Ochoa
University of California, San Diego
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maicol A. Ochoa.
Physical Review Letters | 2015
Massimiliano Esposito; Maicol A. Ochoa; Michael Galperin
We establish the foundations of a nonequilibrium theory of quantum thermodynamics for noninteracting open quantum systems strongly coupled to their reservoirs within the framework of the nonequilibrium Greens functions. The energy of the system and its coupling to the reservoirs are controlled by a slow external time-dependent force treated to first order beyond the quasistatic limit. We derive the four basic laws of thermodynamics and characterize reversible transformations. Stochastic thermodynamics is recovered in the weak coupling limit.
Physical Review B | 2015
Massimiliano Esposito; Maicol A. Ochoa; Michael Galperin
We show that any heat definition expressed as an energy change in the reservoir energy plus any fraction of the system-reservoir interaction is not an exact differential when evaluated along reversible isothermal transformations, except when that fraction is zero. Even in that latter case the reversible heat divided by temperature, namely entropy, does not satisfy the third law of thermodynamics and diverges in the low temperature limit. These results are found within the framework of nonequilibrium Green functions (NEGF) using a single level quantum dot strongly coupled to fermionic reservoirs and subjected to a time-dependent protocol modulating the dot energy as well as the dot-reservoir coupling strength.
Physical Review B | 2015
Massimiliano Esposito; Maicol A. Ochoa; Michael Galperin
We present a method, based on characterizing efficiency fluctuations, to assess the performance of nanoscale thermoelectric junctions. This method accounts for effects typically arising in small junctions, namely, stochasticity in the junction’s performance, quantum effects, and nonequilibrium features preventing a linear response analysis. It is based on a nonequilibrium Green’s function (NEGF) approach, which we use to derive the full counting statistics (FCS) for heat and work, and which in turn allows us to calculate the statistical properties of efficiency fluctuations. We simulate the latter for a variety of simple models where our method is exact. By analyzing the discrepancies with the semiclassical prediction of a quantum master equation (QME) approach, we emphasize the quantum nature of efficiency fluctuations for realistic junction parameters. We finally propose an approximate Gaussian method to express efficiency fluctuations in terms of nonequilibrium currents and noises which are experimentally measurable in molecular junctions.
Journal of Physical Chemistry Letters | 2015
Maicol A. Ochoa; Yoram Selzer; Uri Peskin; Michael Galperin
The slow response of electronic components in junctions limits the direct applicability of pump-probe type spectroscopy in assessing the intramolecular dynamics. Recently the possibility of getting information on a sub-picosecond time scale from dc current measurements was proposed. We revisit the idea of picosecond resolution by pump-probe spectroscopy from dc measurements and show that any intramolecular dynamics not directly related to charge transfer in the current direction is missed by current measurements. We propose a pump-probe dc shot noise spectroscopy as a suitable alternative. Numerical examples of time-dependent and average responses of junctions are presented for generic models.
Physical Review B | 2016
Maicol A. Ochoa; Anton Bruch; Abraham Nitzan
We study the energy distribution in the extended resonant level model at equilibrium. Previous investigations [Phys. Rev. B {\bf 89}, 161306 (2014), Phys. Rev. B {\bf 93}, 115318 (2016)] have found, for a resonant electronic level interacting with a thermal free electron wide-band bath, that the expectation value for the energy of the interacting subsystem can be correctly calculated by considering a symmetric splitting of the interaction Hamiltonian between the subsystem and the bath. However, the general implications of this approach were questioned [Phys. Rev. B {\bf 92}, 235440 (2015)]. Here we show that already at equilibrium, such splitting fails to describe the energy fluctuations, as measured here by the second and third central moments (namely width and skewness) of the energy distribution. Furthermore, we find that when the wide-band approximation does not hold, no splitting of the system-bath interaction can describe the system thermodynamics. We conclude that in general no proper division subsystem of the Hamiltonian of the composite system can account for the energy distribution of the subsystem. This also implies that the thermodynamic effects due to local changes in the subsystem cannot in general be described by such splitting.
Journal of Chemical Physics | 2011
Maicol A. Ochoa; Xiaochun Zhou; Peng Chen; Roger F. Loring
Observation of a chemical transformation at the single-molecule level yields a detailed view of kinetic pathways contributing to the averaged results obtained in a bulk measurement. Studies of a fluorogenic reaction catalyzed by gold nanoparticles have revealed heterogeneous reaction dynamics for these catalysts. Measurements on single nanoparticles yield binary trajectories with stochastic transitions between a dark state in which no product molecules are adsorbed and a fluorescent state in which one product molecule is present. The mean dwell time in either state gives information corresponding to a bulk measurement. Quantifying fluctuations from mean kinetics requires identifying properties of the fluorescence trajectory that are selective in emphasizing certain dynamic processes according to their time scales. We propose the use of constrained mean dwell times, defined as the mean dwell time in a state with the constraint that the immediately preceding dwell time in the other state is, for example, less than a variable time. Calculations of constrained mean dwell times for a kinetic model with dynamic disorder demonstrate that these quantities reveal correlations among dynamic fluctuations at different active sites on a multisite catalyst. Constrained mean dwell times are determined from measurements of single nanoparticle catalysis. The results indicate that dynamical fluctuations at different active sites are correlated, and that especially rapid reaction events produce particularly slowly desorbing product molecules.
Journal of Chemical Physics | 2017
Feng Chen; Maicol A. Ochoa; Michael Galperin
We introduce diagrammatic technique for Hubbard nonequilibrium Green functions. The formulation is an extension of equilibrium considerations for strongly correlated lattice models to description of current carrying molecular junctions. Within the technique intra-system interactions are taken into account exactly, while molecular coupling to contacts is used as a small parameter in perturbative expansion. We demonstrate the viability of the approach with numerical simulations for a generic junction model of quantum dot coupled to two electron reservoirs.
Journal of Physics: Condensed Matter | 2014
Maicol A. Ochoa; Michael Galperin; Mark A. Ratner
We consider a projection operator approach to the non-equilibrium Green function equation-of-motion (PO-NEGF EOM) method. The technique resolves problems of arbitrariness in truncation of an infinite chain of EOMs and prevents violation of symmetry relations resulting from the truncation (equivalence of left- and right-sided EOMs is shown and symmetry with respect to interchange of Fermi or Bose operators before truncation is preserved). The approach, originally developed by Tserkovnikov (1999 Theor. Math. Phys. 118 85) for equilibrium systems, is reformulated to be applicable to time-dependent non-equilibrium situations. We derive a canonical form of EOMs, thus explicitly demonstrating a proper result for the non-equilibrium atomic limit in junction problems. A simple practical scheme applicable to quantum transport simulations is formulated. We perform numerical simulations within simple models and compare results of the approach to other techniques and (where available) also to exact results.
Scientific Reports | 2018
Maicol A. Ochoa; Wolfgang Belzig; Abraham Nitzan
In contrast to a projective quantum measurement, in a weak measurement the system is only weakly perturbed while only partial information on the measured observable is obtained. A simultaneous measurement of non-commuting observables cannot be projective, however the strongest possible such measurement can be defined as providing their values at the smallest uncertainty limit. Starting with the Arthurs and Kelly (AK) protocol for such measurement of position and momentum, we derive a systematic extension to a corresponding weak measurement along three steps: First, a plausible form of the weak measurement operator analogous to the Gaussian Kraus operator, often used to model a weak measurement of a single observable, is obtained by projecting a naïve extension (valid for commuting observable) onto the corresponding Gabor space. Second, we show that the so obtained set of measurement operators satisfies the normalization condition for the probability to obtain given values of the position and momentum in the weak measurement operation, namely that this set constitutes a positive operator valued measure (POVM) in the position-momentum space. Finally, we show that the so-obtained measurement operator corresponds to a generalization of the AK measurement protocol in which the initial detector wavefunctions is suitable broadened.
Journal of Physical Chemistry C | 2014
Alexander J. White; Maicol A. Ochoa; Michael Galperin