Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maidul Hossain is active.

Publication


Featured researches published by Maidul Hossain.


PLOS ONE | 2011

Interaction of the anticancer plant alkaloid sanguinarine with bovine serum albumin.

Maidul Hossain; Asma Yasmeen Khan; Gopinatha Suresh Kumar

Background Interaction of the iminium and alkanolamine forms of sanguinarine with bovine serum albumin (BSA) was characterized by spectroscopic and calorimetric techniques. Methodology/Principal Findings Formation of strong complexes of BSA with both iminium and alkanolamine forms was revealed from fluorescence quenching of sanguinarine. Binding parameters calculated from Stern-Volmer quenching method revealed that the neutral alkanolamine had higher affinity to BSA compared to the charged iminium form. Specific binding distances of 3.37 and 2.38 nm between Trp 212 (donor) and iminium and alkanolamine forms (acceptor), respectively, were obtained from Forster resonance energy transfer studies. Competitive binding using the site markers warfarin and ibuprofen, having definite binding sites, demonstrated that both forms of sanguinarine bind to site I (subdomain IIA) on BSA. Sanguinarine binding alters protein conformation by reducing the α-helical organization and increasing the coiled structure, indicating a small but definitive partial unfolding of the protein. Thermodynamic parameters evaluated from isothermal titration calorimetry suggested that the binding was enthalpy driven for the iminium form but favoured by negative enthalpy and strong favourable entropy contributions for the alkanolamine form, revealing the involvement of different molecular forces in the complexation. Conclusions/Significance The results suggest that the neutral alkanolamine form binds to the protein more favourably compared to the charged iminium, in stark contrast to the reported DNA binding preference of sanguinarine.


Journal of Physical Chemistry B | 2012

Biophysical studies on the effect of the 13 position substitution of the anticancer alkaloid berberine on its DNA binding.

Debipreeta Bhowmik; Maidul Hossain; Franco Buzzetti; Rosaria D’Auria; Paolo Lombardi; Gopinatha Suresh Kumar

The structural effects and thermodynamics of the DNA binding of six berberine analogues with alkyl chains of varying length and a terminal phenyl group at the C-13 position were investigated. All the analogues bound DNA noncooperatively in contrast to the cooperative binding of berberine. The binding affinity was higher and the effect of the chain length was only up to (CH(2))(3), after which the binding affinity decreased slightly. Intercalative binding with strong stabilization of the DNA helix was revealed. Binding resulted in the weakening of the base stacking with moderate conformational changes within the B-form. The binding was entropy driven in each case, the entropy contribution to the free energy increasing with the chain length up to the threshold (CH(2))(3). The complexation was dominated by nonpolyelectrolytic forces in each case; polyelectrolytic forces contributed only a quarter to the total free energy at 50 mM [Na(+)]. Overall, the phenylalkyl substitution at the C-13 position considerably enhanced the DNA binding and was highest for the analogue with (CH(2))(3). Structural and thermodynamic data on the DNA binding aspects of the substituted berberines are presented in comparison with berberine.


Biophysical Chemistry | 2010

Biophysical studies on the base specificity and energetics of the DNA interaction of photoactive dye thionine: Spectroscopic and calorimetric approach

Puja Paul; Maidul Hossain; Ram Chandra Yadav; Gopinatha Suresh Kumar

In this study absorbance, fluorescence, circular dichroic spectroscopy, viscosity, thermal melting and calorimetric techniques were employed to understand the binding of the phenothiazinium dye, thionine, with deoxyribonucleic acids of varying base composition. Strong hypochromic and bathochromic effects and quenching of fluorescence were observed that showed strong binding of thionine to the DNAs. The binding parameters evaluated from Scatchard analysis through McGhee-von Hippel analysis showed that the binding was non-cooperative and affinities of the order of 10(5)M(-)(1). The results of ferrocyanide fluorescence quenching studies and viscosity experiments, taken together suggested the intercalation of thionine while thermal melting, differential scanning calorimetry and circular dichroic studies provided evidence for the thermal stabilization and conformational perturbations associated with the binding. The thermodynamic parameters elucidated through sensitive isothermal titration calorimetric studies suggested that the binding was exothermic, characterized by negative enthalpy and large positive entropy changes and that the non-electrostatic contributions play a significant role for thionine association to DNA. The heat capacity changes obtained from the temperature dependence of enthalpy changes gave negative values suggesting substantial hydrophobic contribution in the DNA binding process of thionine. Further, an observation of enthalpy-entropy compensation in the DNA binding also suggested the involvement of multiplicity of non covalent interactions in the binding process. The base specificity of the complexation and energetics of the interaction of thionine to DNA are obtained for the first time from this study.


Chemosphere | 2012

Investigations on the interaction of the phototoxic alkaloid coralyne with serum albumins

Asma Yasmeen Khan; Maidul Hossain; Gopinatha Suresh Kumar

The interaction of the phototoxic alkaloid coralyne with bovine and human serum albumins (BSA, HSA) was investigated. Absorbance and fluorescence quenching experiments revealed the formation of strong complexes. Based on the binding parameters calculated from Stern-Volmer quenching method, coralyne has higher affinity to BSA (~10(5) M(-1)) compared to HSA (~10(4) M(-1)). Forster resonance energy transfer studies showed that the specific binding distances between Trp (donor) of the proteins and coralyne (acceptor) were 2.95 and 3.10 nm, respectively. The bindings were favored by negative enthalpy and a stronger favorable entropy contribution. The heat capacity values for binding to BSA and HSA were similar, indicating the involvement of similar molecular forces in the complexation. Competitive binding experiments using site markers demonstrated that coralyne binds to site I (subdomain IIA) of both proteins. The secondary structure of the proteins was altered, suggesting a small but definitive partial unfolding on complexation.


Journal of Physical Chemistry B | 2010

Sequence-selective binding of phenazinium dyes phenosafranin and safranin O to guanine-cytosine deoxyribopolynucleotides: spectroscopic and thermodynamic studies.

Ishita Saha; Maidul Hossain; Gopinatha Suresh Kumar

The sequence selectivity of the DNA binding of the phenazinium dyes phenosafranin and safranin O have been investigated with four sequence-specific deoxyribopolynucleotides from spectroscopic and calorimetric studies. The alternating guanine-cytosine sequence selectivity of the dyes has been revealed from binding affinity values, circular dichroism, thermal melting, competition dialysis, and calorimetric results. The binding affinities of both the dyes to the polynucleotides were of the order of 10(5) M(-1), but the values were higher for the guanine-cytosine polynucleotides over adenine-thymine ones. Phenosafranin had a higher binding affinity compared to safranin O. Isothermal titration calorimetric studies revealed that the binding reactions were exothermic and favored by negative enthalpy and predominantly large positive entropy contributions in all cases except poly(dA)·poly(dT) where the profile was anomalous. Although charged, nonpolyelectrolytic contribution was revealed to be dominant to the free energy of binding. The negative heat capacity values obtained from the temperature dependence of enthalpy changes, which were higher for phenosafranin compared to safranin O, suggested significant hydrophobic contribution to the binding process. In aggregate, the data presents evidence for the alternating guanine-cytosine base pair selectivity of these phenazinium dyes and a stronger binding of phenosafranin over safranin O.


PLOS ONE | 2012

Biophysical characterization of the strong stabilization of the RNA triplex poly(U)•poly(A)*poly(U) by 9-O-(ω-amino) alkyl ether berberine analogs.

Debipreeta Bhowmik; Suman Das; Maidul Hossain; Lucy Haq; Gopinatha Suresh Kumar

Background Binding of two 9-O-(ω-amino) alkyl ether berberine analogs BC1 and BC2 to the RNA triplex poly(U)•poly(A)*poly(U) was studied by various biophysical techniques. Methodology/Principal Findings Berberine analogs bind to the RNA triplex non-cooperatively. The affinity of binding was remarkably high by about 5 and 15 times, respectively, for BC1 and BC2 compared to berberine. The site size for the binding was around 4.3 for all. Based on ferrocyanide quenching, fluorescence polarization, quantum yield values and viscosity results a strong intercalative binding of BC1 and BC2 to the RNA triplex has been demonstrated. BC1 and BC2 stabilized the Hoogsteen base paired third strand by about 18.1 and 20.5°C compared to a 17.5°C stabilization by berberine. The binding was entropy driven compared to the enthalpy driven binding of berbeine, most likely due to additional contacts within the grooves of the triplex and disruption of the water structure by the alkyl side chain. Conclusions/Significance Remarkably higher binding affinity and stabilization effect of the RNA triplex by the amino alkyl berberine analogs was achieved compared to berberine. The length of the alkyl side chain influence in the triplex stabilization phenomena.


Journal of Biomolecular Structure & Dynamics | 2012

Binding of the anticancer alkaloid sanguinarine with tRNAphe: spectroscopic and calorimetric studies

Maidul Hossain; Ayesha Kabir; Gopinatha Suresh Kumar

The interaction of the natural plant alkaloid and anticancer agent sanguinarine with tRNAphe has been investigated by spectroscopic and calorimetric techniques. Sanguinarine iminium binds to tRNAphe cooperatively; alkanolamine does not bind but in presence of large tRNAphe concentration, a conversion from alkanolamine to iminium occurs resulting in concomitant binding of the latter. The binding affinity of the iminium to tRNAphe obtained from isothermal titration calorimetry was of the order of 105 M−1, which is close to that evaluated from spectroscopy. The binding was driven largely by negative enthalpy and a smaller but favourable positive entropy change. The binding was dependent on the [Na+] concentration, but had a larger non-electrostatic contribution to the Gibbs energy. A small heat capacity value and the enthalpy–entropy compensation in the energetics of the interaction characterized the binding of the iminium form to tRNAphe. This study confirms that the tRNAphe binding moiety is the iminium form of sanguinarine.


DNA and Cell Biology | 2011

Enhanced DNA Binding of 9-ω-Amino Alkyl Ether Analogs from the Plant Alkaloid Berberine

Md. Maidul Islam; Anirban Basu; Maidul Hossain; Gopalsamy Sureshkumar; Srinivas Hotha; Gopinatha Suresh Kumar

To understand the structure-activity relationship of isoquinoline alkaloids, absorption, fluorescence, circular dichroism, and thermodynamics were employed to study the interaction of five C-9-ω-amino alkyl ether analogs from the plant alkaloid berberine with double-stranded calf thymus DNA. The C-9 derivatization resulted in dramatic enhancements in the fluorescence emission of these compounds. The most remarkable changes in the spectral and binding properties were in the BC4 and BC5 derivatives. Interactions of these analogs, which have an additional recognition motif with DNA, were evaluated through different spectroscopic and calorimetric titration experiments. The analogs remarkably enhanced the DNA binding affinity and the same was directly dependent on the alkyl chain length. The analog with six alkyl chains enhanced the DNA binding affinity by about 33 times compared with berberine. The binding became more entropically driven with increasing chain length. These results may be of potential use in the design of berberine derivatives and understanding of the structure-activity relationship for improved therapeutic applications.


Physical Chemistry Chemical Physics | 2010

Base pair specificity and energetics of binding of the phenazinium molecules phenosafranine and safranine-O to deoxyribonucleic acids: a comparative study

Ishita Saha; Maidul Hossain; Gopinatha Suresh Kumar

The base specificity and energetics of DNA binding of the phenazinium dyes phenosafranine and safranine-O have been studied using various biophysical tools. The guanine-cytosine base specificity of both compounds was established from binding affinity values and competition dialysis results and also from circular dichroism, thermal melting, and calorimetric studies. Both dyes bind to DNA with affinity of the order of 10(5) M(-1), but the values are significantly higher for the guanine-cytosine rich DNAs over adenine-thymine rich ones and for phenosafranine over safranine-O. Calorimetric studies revealed that the binding reactions were exothermic and favoured by negative enthalpy as well as predominantly large positive entropy contributions. The temperature dependence of enthalpy changes yielded negative heat capacity values, which were higher for phenosafranine, compared to safranine-O, suggesting substantial contribution from hydrophobic forces in the binding process. Enthalpy-entropy compensation behaviour was also observed for the binding of both dyes to DNAs, revealing the molecular aspects of the interaction. Taken together, the spectroscopic and calorimetric data reflect clearly the guanine-cytosine base specificity of these molecules and a stronger DNA binding of PSF over SO. The results also provide some insights into the role of a bulkier substituent in the phenazinium ring in the binding process.


Journal of Hazardous Materials | 2013

Interaction of carbon nanoparticles to serum albumin: elucidation of the extent of perturbation of serum albumin conformations and thermodynamical parameters.

Samir Mandal; Maidul Hossain; P. Sujatha Devi; Gopinatha Suresh Kumar; Keya Chaudhuri

Carbon nanoparticles continuously generated from industries and vehicles due to incomplete combustion of fuels is one of the potent causes of air pollution. The exposure of this polluted air with carbon nanoparticles, introduced into the bloodstream of animals in the course of respiration, motivated us to study their interaction with plasma proteins, bovine serum albumin and human serum albumin. Carbon nanoparticles with very small size and high purity were synthesized by dehydration of d-glucose using concentrated sulphuric acid as dehydrating agent. These were characterized by transmission electron microscopy, atomic force microscopy, X-ray diffraction, Raman spectroscopy, FTIR spectroscopy and UV-visible spectroscopy. Carbon nanoparticles-protein interactions were studied by fluorescence spectroscopy, circular dichroism spectroscopy and isothermal titration calorimetry. The fluorescence quenching constants and thermodynamic parameters such as enthalpy change (ΔH°), entropy change (ΔS°) and free energy change (ΔG°) were calculated, which indicated a strong static quenching and primary electrostatic interaction between the carbon nanoparticles and blood proteins. Circular dichroism spectra provided the information about the secondary structure alteration of the proteins in presence of carbon nanoparticles. These findings have shed light towards an understanding of the interactions between carbon nanoparticles and serum proteins which may clarify the potential risks and undesirable health effects of carbon nanoparticles, as well as the related cellular trafficking and systemic translocation.

Collaboration


Dive into the Maidul Hossain's collaboration.

Top Co-Authors

Avatar

Gopinatha Suresh Kumar

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pradeep K. Jha

Indian Institute of Technology Kharagpur

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Asma Yasmeen Khan

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ayesha Kabir

Indian Institute of Chemical Biology

View shared research outputs
Top Co-Authors

Avatar

Chabita Saha

West Bengal University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge