Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maija Wolf is active.

Publication


Featured researches published by Maija Wolf.


American Journal of Pathology | 1999

DNA Copy Number Losses in Human Neoplasms

Sakari Knuutila; Yan Aalto; Kirsi Autio; Anna-Maria Björkqvist; Wael El-Rifai; Samuli Hemmer; Tarja Huhta; Eeva Kettunen; Sonja Kiuru-Kuhlefelt; Marcelo L. Larramendy; Tamara Lushnikova; Outi Monni; Heini Pere; Johanna Tapper; Maija Tarkkanen; Asta Varis; Veli-Matti Wasenius; Maija Wolf; Ying Zhu

This review summarizes reports of recurrent DNA sequence copy number losses in human neoplasms detected by comparative genomic hybridization. Recurrent losses that affect each of the chromosome arms in 73 tumor types are tabulated from 169 reports. The tables are available online at http://www.amjpathol.org and http://www. helsinki.fi/ approximately lglvwww/CMG.html. The genes relevant to the lost regions are discussed for each of the chromosomes. The review is supplemented also by a list of known and putative tumor suppressor genes and DNA repair genes (see Table 1, online). Losses are found in all chromosome arms, but they seem to be relatively rare at 1q, 2p, 3q, 5p, 6p, 7p, 7q, 8q, 12p, and 20q. Losses and their minimal common overlapping areas that were present in a great proportion of the 73 tumor entities reported in Table 2 (see online) are (in descending order of frequency): 9p23-p24 (48%), 13q21 (47%), 6q16 (44%), 6q26-q27 (44%), 8p23 (37%), 18q22-q23 (37%), 17p12-p13 (34%), 1p36.1 (34%), 11q23 (33%), 1p22 (32%), 4q32-qter (31%), 14q22-q23 (25%), 10q23 (25%), 10q25-qter (25%),15q21 (23%), 16q22 (23%), 5q21 (23%), 3p12-p14 (22%), 22q12 (22%), Xp21 (21%), Xq21 (21%), and 10p12 (20%). The frequency of losses at chromosomes 7 and 20 was less than 10% in all tumors. The chromosomal regions in which the most frequent losses are found implicate locations of essential tumor suppressor genes and DNA repair genes that may be involved in the pathogenesis of several tumor types.


Genome Biology | 2008

Systematic bioinformatic analysis of expression levels of 17,330 human genes across 9,783 samples from 175 types of healthy and pathological tissues

Sami Kilpinen; Reija Autio; Kalle Ojala; Kristiina Iljin; Elmar Bucher; Henri Sara; Tommi Pisto; Matti Saarela; Rolf Skotheim; Mari Björkman; John Patrick Mpindi; Saija Haapa-Paananen; Paula Vainio; Henrik Edgren; Maija Wolf; Jaakko Astola; Sampsa Hautaniemi; Olli Kallioniemi

Our knowledge on tissue- and disease-specific functions of human genes is rather limited and highly context-specific. Here, we have developed a method for the comparison of mRNA expression levels of most human genes across 9,783 Affymetrix gene expression array experiments representing 43 normal human tissue types, 68 cancer types, and 64 other diseases. This database of gene expression patterns in normal human tissues and pathological conditions covers 113 million datapoints and is available from the GeneSapiens website.


Cancer Research | 2006

TMPRSS2 Fusions with Oncogenic ETS Factors in Prostate Cancer Involve Unbalanced Genomic Rearrangements and Are Associated with HDAC1 and Epigenetic Reprogramming

Kristiina Iljin; Maija Wolf; Henrik Edgren; Santosh Gupta; Sami Kilpinen; Rolf I. Skotheim; Mari T. Peltola; Frank Smit; Gerald W. Verhaegh; Jack A. Schalken; Olli Kallioniemi

Translocations fusing the strong androgen-responsive gene, TMPRSS2, with ERG or other oncogenic ETS factors may facilitate prostate cancer development. Here, we studied 18 advanced prostate cancers for ETS factor alterations, using reverse transcription-PCR and DNA and RNA array technologies, and identified putative ERG downstream gene targets from the microarray data of 410 prostate samples. Out of the 27 ETS factors, ERG was most frequently overexpressed. Seven cases showed TMPRSS2:ERG gene fusions, whereas the TMPRSS2:ETV4 fusion was seen in one case. In five out of six tumors with high ERG expression, array-CGH analysis revealed interstitial 2.8 Mb deletions between the TMPRSS2 and ERG loci, or smaller, unbalanced rearrangements. In silico analysis of the ERG gene coexpression patterns revealed an association with high expression of the histone deacetylase 1 gene, and low expression of its target genes. Furthermore, we observed increased expression of WNT-associated pathways and down-regulation of tumor necrosis factor and cell death pathways. In summary, our data indicate that the TMPRSS2:ERG translocation is common in advanced prostate cancer and occurs by virtue of unbalanced genomic rearrangements. Activation of ERG by fusion with TMPRSS2 may lead to epigenetic reprogramming, WNT signaling, and down-regulation of cell death pathways, implicating ERG in several hallmarks of cancer with potential therapeutic importance.


Nature Genetics | 2004

Nonsense-mediated decay microarray analysis identifies mutations of EPHB2 in human prostate cancer

Pia Huusko; Damaris Ponciano-Jackson; Maija Wolf; Jeff Kiefer; David O. Azorsa; Sukru Tuzmen; Don Weaver; Christiane M. Robbins; Tracy Moses; Minna Allinen; Sampsa Hautaniemi; Yidong Chen; Abdel G. Elkahloun; Mark Basik; G. Steven Bova; Lukas Bubendorf; Alessandro Lugli; Guido Sauter; Johanna Schleutker; Hilmi Ozcelik; Sabine Elowe; Tony Pawson; Jeffrey M. Trent; John D. Carpten; Olli Kallioniemi; Spyro Mousses

The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays and array-based comparative genomic hybridization for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2. The DU 145 prostate cancer cell line, originating from a brain metastasis, carries a truncating mutation of EPHB2 and a deletion of the remaining allele. Additional frameshift, splice site, missense and nonsense mutations are present in clinical prostate cancer samples. Transfection of DU 145 cells, which lack functional EphB2, with wild-type EPHB2 suppresses clonogenic growth. Taken together with studies indicating that EphB2 may have an essential role in cell migration and maintenance of normal tissue architecture, our findings suggest that mutational inactivation of EPHB2 may be important in the progression and metastasis of prostate cancer.


Developmental Cell | 2008

Integrin trafficking regulated by Rab21 is necessary for cytokinesis

Teijo Pellinen; Saara Tuomi; Antti Arjonen; Maija Wolf; Henrik Edgren; Hannelore Meyer; Robert Grosse; Thomas M. Kitzing; Juha Rantala; Olli Kallioniemi; Reinhard Fässler; Marko J. Kallio; Johanna Ivaska

Adherent cells undergo remarkable changes in shape during cell division. However, the functional interplay between cell adhesion turnover and the mitotic machinery is poorly understood. The endo/exocytic trafficking of integrins is regulated by the small GTPase Rab21, which associates with several integrin alpha subunits. Here, we show that targeted trafficking of integrins to and from the cleavage furrow is required for successful cytokinesis, and that this is regulated by Rab21. Rab21 activity, integrin-Rab21 association, and integrin endocytosis are all necessary for normal cytokinesis, which becomes impaired when integrin-mediated adhesion at the cleavage furrow fails. We also describe a chromosomal deletion and loss of Rab21 gene expression in human cancer, which leads to the accumulation of multinucleate cells. Importantly, reintroduction of Rab21 rescued this phenotype. In conclusion, Rab21-regulated integrin trafficking is essential for normal cell division, and its defects may contribute to multinucleation and genomic instability, which are hallmarks of cancer.


Neoplasia | 2004

High-resolution analysis of gene copy number alterations in human prostate cancer using CGH on cDNA microarrays: impact of copy number on gene expression.

Maija Wolf; Spyro Mousses; Sampsa Hautaniemi; Ritva Karhu; Pia Huusko; Minna Allinen; Abdel G. Elkahloun; Outi Monni; Yidong Chen; Anne Kallioniemi; Olli P. Kallioniemi

Identification of target genes for genetic rearrangements in prostate cancer and the impact of copy number changes on gene expression are currently not well understood. Here, we applied high-resolution comparative genomic hybridization (CGH) on cDNA microarrays for analysis of prostate cancer cell lines. CGH microarrays identified most of the alterations detected by classic chromosomal CGH, as well as a number of previously unreported alterations. Specific recurrent regions of gain (28) and loss (18) were found, and their boundaries defined with sub-megabasepair accuracy. The most common changes included copy number decreases at 13q, and gains at 1q and 5p. Refined mapping identified several sites, such as at 13q (33-44, 49-51, and 74-76 Mbp from the p-telomere), which matched with minimal regions of loss seen in extensive loss of heterozygosity mapping studies of large numbers of tumors. Previously unreported recurrent changes were found at 2p, 2q, 3p, and 17q (losses), and at 3q, 5p, and 6p (gains). Integration of genomic and transcriptomic data revealed the role of individual candidate target genes for genomic alterations as well as a highly significant (P <.0001) overall association between copy number levels and the percentage of differentially expressed genes. Across the genome, the overall impact of copy number on gene expression levels was, to a large extent, attributable to low-level gains and losses of copy number, corresponding to common deletions and gains of often large chromosomal regions.


Genes, Chromosomes and Cancer | 2005

Gene amplifications in osteosarcoma—CGH microarray analysis

Jassu Atiye; Maija Wolf; Sippy Kaur; Outi Monni; Tom Böhling; Aarne Kivioja; Éva Tas; Massimo Serra; Maija Tarkkanen; Sakari Knuutila

Little is known about the genomic alterations underlying osteosarcoma. We performed a genomewide high‐resolution gene copy number analysis of 22 osteosarcoma samples using comparative genomic hybridization on a cDNA microarray that contained cDNA clones of about 13,000 genes. Nineteen of the 22 cases had amplifications that on average spanned more than 1 Mb and contained more than 10 genes. Numerous regions of gain and loss were identified, and their boundaries were defined at high resolution. Novel amplicons were found at 14q11, 17q25, and 22q11–q13. Earlier‐known large amplified regions were detected at 12q11–q15, 8q24, 6p12–p13, and 17p11–p13 in 8, 6, 5, and 4 of the 22 samples, respectively. Amplification of 12q was observed more frequently (36% of the cases) than previously reported. Previously known small amplicons at 1p34–p36, 1q21, 19q13, and 21q22 were seen in at least three cases. Our results implicate TOM1L2 and CYP27B1 as having roles as novel targets for the 17p and 12q amplicons, respectively. Details (www.helsinki.fi/cmg) of the amplified genes in each amplicon provide valuable raw data for further in silico studies.


Bioinformatics | 2003

CGH-Plotter: MATLAB toolbox for CGH-data analysis

Reija Autio; Sampsa Hautaniemi; Päivikki Kauraniemi; Olli Yli-Harja; Jaakko Astola; Maija Wolf; Anne Kallioniemi

CGH-Plotter is a MATLAB toolbox with a graphical user interface for the analysis of comparative genomic hybridization (CGH) microarray data. CGH-Plotter provides a tool for rapid visualization of CGH-data according to the locations of the genes along the genome. In addition, the CGH-Plotter identifies regions of amplifications and deletions, using k-means clustering and dynamic programming. The application offers a convenient way to analyze CGH-data and can also be applied for the analysis of cDNA microarray expression data. CGH-Plotter toolbox is platform independent and requires MATLAB 6.1 or higher to operate.


Breast Cancer Research and Treatment | 2011

Enhanced serine production by bone metastatic breast cancer cells stimulates osteoclastogenesis.

Sirkku Pollari; Sanna Maria Käkönen; Henrik Edgren; Maija Wolf; Pekka Kohonen; Henri Sara; Theresa A. Guise; Olli Kallioniemi

Since bone metastatic breast cancer is an incurable disease, causing significant morbidity and mortality, an understanding of the underlying molecular mechanisms would be highly valuable. Here, we describe in vitro and in vivo evidences for the importance of serine biosynthesis in the metastasis of breast cancer to bone. We first characterized the bone metastatic propensity of the MDA-MB-231(SA) cell line variant as compared to the parental MDA-MB-231 cells by radiographic and histological observations in the inoculated mice. Genome-wide gene expression profiling of this isogenic cell line pair revealed that all the three genes involved in the l-serine biosynthesis pathway, phosphoglycerate dehydrogenase (PHGDH), phosphoserine aminotransferase 1 (PSAT1), and phosphoserine phosphatase (PSPH) were upregulated in the highly metastatic variant. This pathway is the primary endogenous source for l-serine in mammalian tissues. Consistently, we observed that the proliferation of MDA-MB-231(SA) cells in serine-free conditions was dependent on PSAT1 expression. In addition, we observed that l-serine is essential for the formation of bone resorbing human osteoclasts and may thus contribute to the vicious cycle of osteolytic bone metastasis. High expression of PHGDH and PSAT1 in primary breast cancer was significantly associated with decreased relapse-free and overall survival of patients and malignant phenotypic features of breast cancer. In conclusion, high expression of serine biosynthesis genes in metastatic breast cancer cells and the stimulating effect of l-serine on osteoclastogenesis and cancer cell proliferation indicate a functionally critical role for serine biosynthesis in bone metastatic breast cancer and thereby an opportunity for targeted therapeutic interventions.


Oncogene | 2006

Identification of target genes in laryngeal squamous cell carcinoma by high-resolution copy number and gene expression microarray analyses

Anna-Kaarina Järvinen; Reija Autio; Saija Haapa-Paananen; Maija Wolf; Matti Saarela; Reidar Grénman; Ilmo Leivo; Olli Kallioniemi; Antti A. Mäkitie; Outi Monni

Molecular mechanisms contributing to initiation and progression of head and neck squamous cell carcinoma are still poorly known. Numerous genetic alterations have been described, but molecular consequences of such alterations in most cases remain unclear. Here, we performed an integrated high-resolution microarray analysis of gene copy number and expression in 20 laryngeal cancer cell lines and primary tumors. Our aim was to identify genetic alterations that play a key role in disease pathogenesis and pinpoint genes whose expression is directly impacted by these events. Integration of DNA level data from array-based comparative genomic hybridization with RNA level information from oligonucleotide microarrays was achieved with custom-developed bioinformatic methods. High-level amplifications had a clear impact on gene expression. Across the genome, overexpression of 739 genes could be attributed to gene amplification events in cell lines, with 325 genes showing the same phenomenon in primary tumors including FADD and PPFIA1 at 11q13. The analysis of gene ontology and pathway distributions further pinpointed genes that may identify potential targets of therapeutic intervention. Our data highlight genes that may be critically important to laryngeal cancer progression and offer potential therapeutic targets.

Collaboration


Dive into the Maija Wolf's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mika Kontro

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maija Tarkkanen

Helsinki University Central Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge