Maike Kittelmann
Oxford Brookes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maike Kittelmann.
Current Biology | 2014
Carolyn L. Smith; Frederique Varoqueaux; Maike Kittelmann; Rita Azzam; Benjamin H. Cooper; Christine A. Winters; Michael Eitel; Dirk Fasshauer; Thomas S. Reese
BACKGROUND Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Bettina Schmid; Alexander Hruscha; Sebastian Hogl; Julia Banzhaf-Strathmann; Katrin Strecker; Julie van der Zee; Mathias Teucke; Stefan Eimer; Jan Hegermann; Maike Kittelmann; Elisabeth Kremmer; Marc Cruts; Barbara Solchenberger; Laura Hasenkamp; Frauke van Bebber; Christine Van Broeckhoven; Dieter Edbauer; Stefan F. Lichtenthaler; Christian Haass
Mutations in the Tar DNA binding protein of 43 kDa (TDP-43; TARDBP) are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with TDP-43+ inclusions (FTLD-TDP). To determine the physiological function of TDP-43, we knocked out zebrafish Tardbp and its paralogue Tardbp (TAR DNA binding protein-like), which lacks the glycine-rich domain where ALS- and FTLD-TDP–associated mutations cluster. tardbp mutants show no phenotype, a result of compensation by a unique splice variant of tardbpl that additionally contains a C-terminal elongation highly homologous to the glycine-rich domain of tardbp. Double-homozygous mutants of tardbp and tardbpl show muscle degeneration, strongly reduced blood circulation, mispatterning of vessels, impaired spinal motor neuron axon outgrowth, and early death. In double mutants the muscle-specific actin binding protein Filamin Ca is up-regulated. Strikingly, Filamin C is similarly increased in the frontal cortex of FTLD-TDP patients, suggesting aberrant expression in smooth muscle cells and TDP-43 loss-of-function as one underlying disease mechanism.
Cell | 2015
Wei Zhang; Li E. Cheng; Maike Kittelmann; Jiefu Li; Maja Petkovic; Tong Cheng; Peng Jin; Zhenhao Guo; Martin C. Göpfert; Lily Yeh Jan; Yuh Nung Jan
How metazoan mechanotransduction channels sense mechanical stimuli is not well understood. The NOMPC channel in the transient receptor potential (TRP) family, a mechanotransduction channel for Drosophila touch sensation and hearing, contains 29 Ankyrin repeats (ARs) that associate with microtubules. These ARs have been postulated to act as a tether that conveys force to the channel. Here, we report that these N-terminal ARs form a cytoplasmic domain essential for NOMPC mechanogating in vitro, mechanosensitivity of touch receptor neurons in vivo, and touch-induced behaviors of Drosophila larvae. Duplicating the ARs elongates the filaments that tether NOMPC to microtubules in mechanosensory neurons. Moreover, microtubule association is required for NOMPC mechanogating. Importantly, transferring the NOMPC ARs to mechanoinsensitive voltage-gated potassium channels confers mechanosensitivity to the chimeric channels. These experiments strongly support a tether mechanism of mechanogating for the NOMPC channel, providing insights into the basis of mechanosensitivity of mechanotransduction channels.
Journal of Cell Biology | 2013
Maike Kittelmann; Jan Hegermann; Alexandr Goncharov; Hidenori Taru; Mark H. Ellisman; Janet E. Richmond; Yishi Jin; Stefan Eimer
Liprin-α/SYD-2 activity promotes the polymerization of electron-dense projections in the presynaptic active zone through increased recruitment of ELKS-1/ELKS.
Proceedings of the National Academy of Sciences of the United States of America | 2016
David Scheuring; Christian Löfke; Falco Krüger; Maike Kittelmann; Ahmed Eisa; Louise Hughes; Richard S. Smith; Chris Hawes; Karin Schumacher; Jürgen Kleine-Vehn
Significance Control of cell size is fundamentally different in animals and plants. The actin cytoskeleton has a direct impact on the control of cell size in animals, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we show that actin is used in a plant-specific growth mechanism by controlling the volume of the largest plant organelle, the vacuole. Actin is required for the auxin-dependent convolution and deconvolution of the vacuole, steering the vacuolar occupancy of the cell. This function indirectly impacts cytosol size and presumably allows plant cells to grow without alterations in cytosolic content. These findings could lead to a better understanding of plant cells’ ability to expand faster than vacuole-lacking animal cells. The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin–myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.
Proceedings of the National Academy of Sciences of the United States of America | 2012
John Jia En Chua; Eugenia Butkevich; Josephine M. Worseck; Maike Kittelmann; Mads Grønborg; Elmar Behrmann; Ulrich Stelzl; Nathan J. Pavlos; Maciej Lalowski; Stefan Eimer; Erich E. Wanker; Dieter R. Klopfenstein; Reinhard Jahn
Presynaptic nerve terminals are formed from preassembled vesicles that are delivered to the prospective synapse by kinesin-mediated axonal transport. However, precisely how the various cargoes are linked to the motor proteins remains unclear. Here, we report a transport complex linking syntaxin 1a (Stx) and Munc18, two proteins functioning in synaptic vesicle exocytosis at the presynaptic plasma membrane, to the motor protein Kinesin-1 via the kinesin adaptor FEZ1. Mutation of the FEZ1 ortholog UNC-76 in Caenorhabditis elegans causes defects in the axonal transport of Stx. We also show that binding of FEZ1 to Kinesin-1 and Munc18 is regulated by phosphorylation, with a conserved site (serine 58) being essential for binding. When expressed in C. elegans, wild-type but not phosphorylation-deficient FEZ1 (S58A) restored axonal transport of Stx. We conclude that FEZ1 operates as a kinesin adaptor for the transport of Stx, with cargo loading and unloading being regulated by protein kinases.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Maike Kittelmann; Jana F. Liewald; Jan Hegermann; Christian Schultheis; Martin Brauner; Wagner Steuer Costa; Sebastian Wabnig; Stefan Eimer; Alexander Gottschalk
Significance Chemical synapses are key contact points in the nervous system, where signals are transmitted between neurons. These signals, small chemical molecules, are released from membranous synaptic vesicles by fusion with the neuronal membrane. Synaptic vesicle membrane and proteins need to be recycled to support ongoing transmission. Upon seizure, massive amounts of synaptic vesicles fuse, while neurons become exhausted and need to recover. We used optical stimulation of neurons in live Caenorhabditis elegans nematodes to induce extreme neuronal activity and followed processes underlying the recovery progression at behavioral, genetic, physiological, and ultrastructural levels in an intact animal. Local recycling of synaptic vesicles (SVs) allows neurons to sustain transmitter release. Extreme activity (e.g., during seizure) may exhaust synaptic transmission and, in vitro, induces bulk endocytosis to recover SV membrane and proteins; how this occurs in animals is unknown. Following optogenetic hyperstimulation of Caenorhabditis elegans motoneurons, we analyzed synaptic recovery by time-resolved behavioral, electrophysiological, and ultrastructural assays. Recovery of docked SVs and of evoked-release amplitudes (indicating readily-releasable pool refilling) occurred within ∼8–20 s (τ = 9.2 s and τ = 11.9 s), whereas locomotion recovered only after ∼60 s (τ = 20 s). During ∼11-s stimulation, 50- to 200-nm noncoated vesicles (“100nm vesicles”) formed, which disappeared ∼8 s poststimulation, likely representing endocytic intermediates from which SVs may regenerate. In endophilin, synaptojanin, and dynamin mutants, affecting endocytosis and vesicle scission, resolving 100nm vesicles was delayed (>20 s). In dynamin mutants, 100nm vesicles were abundant and persistent, sometimes continuous with the plasma membrane; incomplete budding of smaller vesicles from 100nm vesicles further implicates dynamin in regenerating SVs from bulk-endocytosed vesicles. Synaptic recovery after exhaustive activity is slow, and different time scales of recovery at ultrastructural, physiological, and behavioral levels indicate multiple contributing processes. Similar processes may jointly account for slow recovery from acute seizures also in higher animals.
Journal of Microscopy | 2016
Maike Kittelmann; Chris Hawes; Louise Hughes
Serial block face imaging with the scanning electron microscope has been developed as an alternative to serial sectioning and transmission electron microscopy for the ultrastructural analysis of the three‐dimensional organization of cells and tissues. An ultramicrotome within the microscope specimen chamber permits sectioning and imaging to a depth of many microns within resin‐embedded specimens. The technology has only recently been adopted by plant microscopists and here we describe some specimen preparation procedures suitable for plant tissue, suggested microscope imaging parameters and discuss the software required for image reconstruction and analysis.
Genetics | 2014
Christopher M. Hoover; Stacey L. Edwards; Szi Chieh Yu; Maike Kittelmann; Janet E. Richmond; Stefan Eimer; Rosalina M. Yorks; Kenneth G. Miller
Neurons release neuropeptides via the regulated exocytosis of dense core vesicles (DCVs) to evoke or modulate behaviors. We found that Caenorhabditis elegans motor neurons send most of their DCVs to axons, leaving very few in the cell somas. How neurons maintain this skewed distribution and the extent to which it can be altered to control DCV numbers in axons or to drive release from somas for different behavioral impacts is unknown. Using a forward genetic screen, we identified loss-of-function mutations in UNC-43 (CaM kinase II) that reduce axonal DCV levels by ∼90% and cell soma/dendrite DCV levels by ∼80%, leaving small synaptic vesicles largely unaffected. Blocking regulated secretion in unc-43 mutants restored near wild-type axonal levels of DCVs. Time-lapse video microscopy showed no role for CaM kinase II in the transport of DCVs from cell somas to axons. In vivo secretion assays revealed that much of the missing neuropeptide in unc-43 mutants is secreted via a regulated secretory pathway requiring UNC-31 (CAPS) and UNC-18 (nSec1). DCV cargo levels in unc-43 mutants are similarly low in cell somas and the axon initial segment, indicating that the secretion occurs prior to axonal transport. Genetic pathway analysis suggests that abnormal neuropeptide function contributes to the sluggish basal locomotion rate of unc-43 mutants. These results reveal a novel pathway controlling the location of DCV exocytosis and describe a major new function for CaM kinase II.
Scientific Reports | 2015
Somdatta Karak; Julie S. Jacobs; Maike Kittelmann; Christian Spalthoff; Radoslaw Katana; Elena Sivan-Loukianova; Michael A. Schon; Maurice J. Kernan; Daniel F. Eberl; Martin C. Göpfert
Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly’s ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.