Verena Kriechbaumer
Oxford Brookes University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Verena Kriechbaumer.
Plant Physiology | 2003
Woong June Park; Verena Kriechbaumer; Axel Müller; Markus Piotrowski; Robert B. Meeley; Alfons Gierl; Erich Glawischnig
We isolated two nitrilase genes, ZmNIT1 and ZmNIT2, from maize (Zea mays) that share 75% sequence identity on the amino acid level. Despite the relatively high homology to Arabidopsis NIT4, ZmNIT2 shows no activity toward β-cyano-alanine, the substrate of Arabidopsis NIT4, but instead hydrolyzes indole-3-acetonitrile (IAN) to indole-3-acetic acid (IAA). ZmNIT2 converts IAN to IAA at least seven to 20 times more efficiently than AtNIT1/2/3. Quantitative real-time polymerase chain reaction revealed the gene expression of both nitrilases in maize kernels where high concentrations of IAA are synthesized tryptophan dependently. Nitrilase protein and endogenous nitrilase activity are present in maize kernels together with the substrate IAN. These results suggest a role for ZmNIT2 in auxin biosynthesis.
Plant Journal | 2012
Verena Kriechbaumer; Pengwei Wang; Chris Hawes; Benjamin Abell
Auxin is a major growth hormone in plants, and recent studies have elucidated many of the molecular mechanisms underlying its action, including transport, perception and signal transduction. However, major gaps remain in our knowledge of auxin biosynthetic control, partly due to the complexity and probable redundancy of multiple pathways that involve the YUCCA family of flavin-dependent mono-oxygenases. This study reveals the differential localization of YUCCA4 alternative splice variants to the endoplasmic reticulum and the cytosol, which depends on tissue-specific splicing. One isoform is restricted to flowers, and is anchored to the cytosolic face of the endoplasmic reticulum membrane via a hydrophobic C-terminal transmembrane domain. The other isoform is present in all tissues and is distributed throughout the cytosol. These findings are consistent with previous observations of yucca4 phenotypes in flowers, and suggest a role for intracellular compartmentation in auxin biosynthesis.
Journal of Experimental Botany | 2007
Maita Latijnhouwers; Trudi Gillespie; Petra C. Boevink; Verena Kriechbaumer; Chris Hawes; Claudine M. Carvalho
Golgins are large coiled-coil proteins that play a role in tethering of vesicles to Golgi membranes and in maintaining the overall structure of the Golgi apparatus. Six Arabidopsis proteins with the structural characteristics of golgins were isolated and shown to locate to Golgi stacks when fused to GFP. Two of these golgin candidates (GC1 and GC2) possess C-terminal transmembrane (TM) domains with similarity to the TM domain of human golgin-84. The C-termini of two others (GC3/GDAP1 and GC4) contain conserved GRAB and GA1 domains that are also found in yeast Rud3p and human GMAP210. GC5 shares similarity with yeast Sgm1p and human TMF and GC6 with yeast Uso1p and human p115. When fused to GFP, the C-terminal domains of AtCASP and GC1 to GC6 localized to the Golgi, showing that they contain Golgi localization motifs. The N-termini, on the other hand, label the cytosol or nucleus. Immuno-gold labelling and co-expression with the cis Golgi Q-SNARE Memb11 resulted in a more detailed picture of the sub-Golgi location of some of these putative golgins. Using two independent assays it is further demonstrated that the interaction between GC5, the TMF homologue, and the Rab6 homologues is conserved in plants.
Journal of Experimental Botany | 2007
Verena Kriechbaumer; Woong June Park; Markus Piotrowski; Robert B. Meeley; Alfons Gierl; Erich Glawischnig
The auxin indole-3-acetic acid (IAA), which is essential for plant growth and development, is suggested to be synthesized via several redundant pathways. In maize (Zea mays), the nitrilase ZmNIT2 is expressed in auxin-synthesizing tissues and efficiently hydrolyses indole-3-acetonitrile to IAA. Zmnit2 transposon insertion mutants were compromised in root growth in young seedlings and sensitivity to indole-3-acetonitrile, and accumulated lower quantities of IAA conjugates in kernels and root tips, suggesting a substantial contribution of ZmNIT2 to total IAA biosynthesis in maize. An additional enzymatic function, turnover of beta-cyanoalanine, is acquired when ZmNIT2 forms heteromers with the homologue ZmNIT1. In plants carrying an insertion mutation in either nitrilase gene this activity was strongly reduced. A dual role for ZmNIT2 in auxin biosynthesis and in cyanide detoxification as a heteromer with ZmNIT1 is therefore proposed.
Traffic | 2009
Verena Kriechbaumer; Rowena Shaw; Joy Mukherjee; Caroline G. Bowsher; Anne-Marie Harrison; Benjamin Abell
Tail‐anchored (TA) proteins function in key cellular processes in eukaryotic cells, such as vesicle trafficking, protein translocation and regulation of transcription. They anchor to internal cell membranes by a C‐terminal transmembrane domain, which also serves as a targeting sequence. Targeting occurs post‐translationally, via pathways that are specific to the precursor, which makes TA proteins a model system for investigating post‐translational protein targeting. Bioinformatics approaches have previously been used to identify potential TA proteins in yeast and humans, yet little is known about TA proteins in plants. The identification of plant TA proteins is important for extending the post‐translational model system to plastids, in addition to general proteome characterization, and the identification of functional homologues characterized in other organisms. We identified 454 loci that potentially encode TA proteins in Arabidopsis, and combined published data with new localization experiments to assign localizations to 130 proteins, including 29 associated with plastids. By analysing the tail anchor sequences of characterized proteins, we have developed a tool for predicting localization and estimate that 138 TA proteins are localized to plastids.
Plant Physiology | 2015
Verena Kriechbaumer; Stanley W. Botchway; Susan E. Slade; Kirsten Knox; Lorenzo Frigerio; Karl J. Oparka; Chris Hawes
Protein interactions for two plasmodesmata-localized reticulon proteins suggest that these proteins, in addition to a role in endoplasmic reticulum modeling, may play important roles in linking the endoplasmic reticulum and plasma membrane. The endoplasmic reticulum (ER) is a ubiquitous organelle that plays roles in secretory protein production, folding, quality control, and lipid biosynthesis. The cortical ER in plants is pleomorphic and structured as a tubular network capable of morphing into flat cisternae, mainly at three-way junctions, and back to tubules. Plant reticulon family proteins (RTNLB) tubulate the ER by dimerization and oligomerization, creating localized ER membrane tensions that result in membrane curvature. Some RTNLB ER-shaping proteins are present in the plasmodesmata (PD) proteome and may contribute to the formation of the desmotubule, the axial ER-derived structure that traverses primary PD. Here, we investigate the binding partners of two PD-resident reticulon proteins, RTNLB3 and RTNLB6, that are located in primary PD at cytokinesis in tobacco (Nicotiana tabacum). Coimmunoprecipitation of green fluorescent protein-tagged RTNLB3 and RTNLB6 followed by mass spectrometry detected a high percentage of known PD-localized proteins as well as plasma membrane proteins with putative membrane-anchoring roles. Förster resonance energy transfer by fluorescence lifetime imaging microscopy assays revealed a highly significant interaction of the detected PD proteins with the bait RTNLB proteins. Our data suggest that RTNLB proteins, in addition to a role in ER modeling, may play important roles in linking the cortical ER to the plasma membrane.
BMC Plant Biology | 2008
Verena Kriechbaumer; Linda M. M. Weigang; Andreas Fießelmann; T. Letzel; Monika Frey; Alfons Gierl; Erich Glawischnig
BackgroundIn bacteria, such as Salmonella typhimurium, tryptophan is synthesized from indole-3-glycerole phosphate (IGP) by a tryptophan synthase αββα heterotetramer. Plants have evolved multiple α (TSA) and β (TSB) homologs, which have probably diverged in biological function and their ability of subunit interaction. There is some evidence for a tryptophan synthase (TS) complex in Arabidopsis. On the other hand maize (Zea mays) expresses the TSA-homologs BX1 and IGL that efficiently cleave IGP, independent of interaction with TSB.ResultsIn order to clarify, how tryptophan is synthesized in maize, two TSA homologs, hitherto uncharacterized ZmTSA and ZmTSAlike, were functionally analyzed. ZmTSA is localized in plastids, the major site of tryptophan biosynthesis in plants. It catalyzes the tryptophan synthase α-reaction (cleavage of IGP), and forms a tryptophan synthase complex with ZmTSB1 in vitro. The catalytic efficiency of the α-reaction is strongly enhanced upon complex formation. A 160 kD tryptophan synthase complex was partially purified from maize leaves and ZmTSA was identified as native α-subunit of this complex by mass spectrometry. ZmTSAlike, for which no in vitro activity was detected, is localized in the cytosol. ZmTSAlike, BX1, and IGL were not detectable in the native tryptophan synthase complex in leaves.ConclusionIt was demonstrated in vivo and in vitro that maize forms a tryptophan synthase complex and ZmTSA functions as α-subunit in this complex.
Journal of Integrative Plant Biology | 2015
Chris Hawes; Petra Kiviniemi; Verena Kriechbaumer
The endoplasmic reticulum forms the first compartment in a series of organelles which comprise the secretory pathway. It takes the form of an extremely dynamic and pleomorphic membrane-bounded network of tubules and cisternae which have numerous different cellular functions. In this review, we discuss the nature of endoplasmic reticulum structure and dynamics, its relationship with closely associated organelles, and its possible function as a highway for the distribution and delivery of a diverse range of structures from metabolic complexes to viral particles.
Plant Physiology | 2015
Kirsten Knox; Pengwei Wang; Verena Kriechbaumer; Jens Tilsner; Lorenzo Frigerio; Imogen Sparkes; Chris Hawes; Karl J. Oparka
Reticulon proteins involved in membrane curvature are targeted to the developing cell plate and label desmotubules in primary plasmodesmata. Primary plasmodesmata (PD) arise at cytokinesis when the new cell plate forms. During this process, fine strands of endoplasmic reticulum (ER) are laid down between enlarging Golgi-derived vesicles to form nascent PD, each pore containing a desmotubule, a membranous rod derived from the cortical ER. Little is known about the forces that model the ER during cell plate formation. Here, we show that members of the reticulon (RTNLB) family of ER-tubulating proteins in Arabidopsis (Arabidopsis thaliana) may play a role in the formation of the desmotubule. RTNLB3 and RTNLB6, two RTNLBs present in the PD proteome, are recruited to the cell plate at late telophase, when primary PD are formed, and remain associated with primary PD in the mature cell wall. Both RTNLBs showed significant colocalization at PD with the viral movement protein of Tobacco mosaic virus, while superresolution imaging (three-dimensional structured illumination microscopy) of primary PD revealed the central desmotubule to be labeled by RTNLB6. Fluorescence recovery after photobleaching studies showed that these RTNLBs are mobile at the edge of the developing cell plate, where new wall materials are being delivered, but significantly less mobile at its center, where PD are forming. A truncated RTNLB3, unable to constrict the ER, was not recruited to the cell plate at cytokinesis. We discuss the potential roles of RTNLBs in desmotubule formation.
Protoplasma | 2012
Verena Kriechbaumer; Ottillie von Loffelholz; Benjamin Abell
Despite mitochondria and chloroplasts having their own genome, 99% of mitochondrial proteins (Rehling et al., Nat Rev Mol Cell Biol 5:519–530, 2004) and more than 95% of chloroplast proteins (Soll, Curr Opin Plant Biol 5:529–535, 2002) are encoded by nuclear DNA, synthesised in the cytosol and imported post-translationally. Protein targeting to these organelles depends on cytosolic targeting factors, which bind to the precursor, and then interact with membrane receptors to deliver the precursor into a translocase. The molecular chaperones Hsp70 and Hsp90 have been widely implicated in protein targeting to mitochondria and chloroplasts, and receptors capable of recognising these chaperones have been identified at the surface of both these organelles (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007). The role of these chaperone receptors is not fully understood, but they have been shown to increase the efficiency of protein targeting (Young et al., Cell 112:41–50, 2003; Qbadou et al., EMBO J 25:1836–1847, 2006). Whether these receptors contribute to the specificity of targeting is less clear. A class of chaperone receptors bearing tetratricopeptide repeat domains is able to specifically bind the highly conserved C terminus of Hsp70 and/or Hsp90. Interestingly, at least of one these chaperone receptors can be found on each organelle (Schlegel et al., Mol Biol Evol 24:2763–2774, 2007), which suggests a universal role in protein targeting for these chaperone receptors. This review will investigate the role that chaperone receptors play in targeting efficiency and specificity, as well as examining recent in silico approaches to find novel chaperone receptors.