Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maire Leyne is active.

Publication


Featured researches published by Maire Leyne.


Circulation | 2005

New Locus for Autosomal Dominant Mitral Valve Prolapse on Chromosome 13 Clinical Insights From Genetic Studies

Francesca Nesta; Maire Leyne; Chaim Yosefy; Charles Simpson; Daisy Dai; Jane E. Marshall; Judy Hung; Susan A. Slaugenhaupt; Robert A. Levine

Background—Mitral valve prolapse (MVP) is a common disorder associated with mitral regurgitation, endocarditis, heart failure, and sudden death. To date, 2 MVP loci have been described, but the defective genes have yet to be discovered. In the present study, we analyzed a large family segregating MVP, and identified a new locus, MMVP3. This study and others have enabled us to explore mitral valve morphological variations of currently uncertain clinical significance. Methods and Results—Echocardiograms and blood samples were obtained from 43 individuals who were classified by the extent and pattern of displacement. Genotypic analyses were performed with polymorphic microsatellite markers. Evidence of linkage was obtained on chromosome 13q31.3-q32.1, with a peak nonparametric linkage score of 18.41 (P<0.0007). Multipoint parametric analysis gave a logarithm of odds score of 3.17 at marker D13S132. Of the 6 related individuals with mitral valve morphologies not meeting diagnostic criteria but resembling fully developed forms, 5 carried all or part of the haplotype linked to MVP. Conclusions—The mapping of a new MVP locus to chromosome 13 confirms the observed genetic heterogeneity and represents an important step toward gene identification. Furthermore, the genetic analysis provides clinical lessons with regard to previously nondiagnostic morphologies. In the familial context, these may represent early expression in gene carriers. Early recognition of gene carriers could potentially enhance the clinical evaluation of patients at risk of full expression, with the ultimate aim of developing interventions to reduce progression.


American Journal of Human Genetics | 2003

Tissue-Specific Reduction in Splicing Efficiency of IKBKAP Due to the Major Mutation Associated with Familial Dysautonomia

Math P. Cuajungco; Maire Leyne; James Mull; Sandra Gill; Weining Lu; David Zagzag; Felicia B. Axelrod; Channa Maayan; James F. Gusella; Susan A. Slaugenhaupt

We recently identified a mutation in the I-kappa B kinase associated protein (IKBKAP) gene as the major cause of familial dysautonomia (FD), a recessive sensory and autonomic neuropathy. This alteration, located at base pair 6 of the intron 20 donor splice site, is present on >99.5% of FD chromosomes and results in tissue-specific skipping of exon 20. A second FD mutation, a missense change in exon 19 (R696P), was seen in only four patients heterozygous for the major mutation. Here, we have further characterized the consequences of the major mutation by examining the ratio of wild-type to mutant (WT:MU) IKBKAP transcript in EBV-transformed lymphoblast lines, primary fibroblasts, freshly collected blood samples, and postmortem tissues from patients with FD. We consistently found that WT IKBKAP transcripts were present, albeit to varying extents, in all cell lines, blood, and postmortem FD tissues. Further, a corresponding decrease in the level of WT protein is seen in FD cell lines and tissues. The WT:MU ratio in cultured lymphoblasts varied with growth phase but not with serum concentration or inclusion of antibiotics. Using both densitometry and real-time quantitative polymerase chain reaction, we found that relative WT:MU IKBKAP RNA levels were highest in cultured patient lymphoblasts and lowest in postmortem central and peripheral nervous tissues. These observations suggest that the relative inefficiency of WT IKBKAP mRNA production from the mutant alleles in the nervous system underlies the selective degeneration of sensory and autonomic neurons in FD.Therefore, exploration of methods to increase the WT:MU IKBKAP transcript ratio in the nervous system offers a promising approach for developing an effective therapy for patients with FD.


American Journal of Human Genetics | 2003

A Locus for Autosomal Dominant Mitral Valve Prolapse on Chromosome 11p15.4

Lisa A. Freed; James S. Acierno; Daisy Dai; Maire Leyne; Jane E. Marshall; Francesca Nesta; Robert A. Levine; Susan A. Slaugenhaupt

Mitral valve prolapse (MVP) is a common cardiovascular abnormality in the United States, occurring in approximately 2.4% of the general population. Clinically, patients with MVP exhibit fibromyxomatous changes in one or both of the mitral leaflets that result in superior displacement of the leaflets into the left atrium. Although often clinically benign, MVP can be associated with important accompanying sequelae, including mitral regurgitation, bacterial endocarditis, congestive heart failure, atrial fibrillation, and even sudden death. MVP is genetically heterogeneous and is inherited as an autosomal dominant trait that exhibits both sex- and age-dependent penetrance. In this report, we describe the results of a genome scan and show that a locus for MVP maps to chromosome 11p15.4. Multipoint parametric analysis performed by use of GENEHUNTER gave a maximum LOD score of 3.12 for the chromosomal region immediately surrounding the four-marker haplotype D11S4124-D11S2349-D11S1338-D11S1323, and multipoint nonparametric analysis (NPL) confirms this finding (NPL=38.59; P=.000397). Haplotype analysis across this region defines a 4.3-cM region between the markers D11S1923 and D11S1331 as the location of a new MVP locus, MMVP2, and confirms the genetic heterogeneity of this disorder. The discovery of genes involved in the pathogenesis of this common disease is crucial to understanding the marked variability in disease expression and mortality seen in MVP.


Molecular and Cellular Biology | 2009

Loss of Mouse Ikbkap, a Subunit of Elongator, Leads to Transcriptional Deficits and Embryonic Lethality That Can Be Rescued by Human IKBKAP

Yei-Tsung Chen; Matthew M. Hims; Ranjit S. Shetty; James Mull; Lijuan Liu; Maire Leyne; Susan A. Slaugenhaupt

ABSTRACT Familial dysautonomia (FD), a devastating hereditary sensory and autonomic neuropathy, results from an intronic mutation in the IKBKAP gene that disrupts normal mRNA splicing and leads to tissue-specific reduction of IKBKAP protein (IKAP) in the nervous system. To better understand the roles of IKAP in vivo, an Ikbkap knockout mouse model was created. Results from our study show that ablating Ikbkap leads to embryonic lethality, with no homozygous Ikbkap knockout (Ikbkap−/−) embryos surviving beyond 12.5 days postcoitum. Morphological analyses of the Ikbkap−/− conceptus at different stages revealed abnormalities in both the visceral yolk sac and the embryo, including stunted extraembryonic blood vessel formation, delayed entry into midgastrulation, disoriented dorsal primitive neural alignment, and failure to establish the embryonic vascular system. Further, we demonstrate downregulation of several genes that are important for neurulation and vascular development in the Ikbkap−/− embryos and show that this correlates with a defect in transcriptional elongation-coupled histone acetylation. Finally, we show that the embryonic lethality resulting from Ikbkap ablation can be rescued by a human IKBKAP transgene. For the first time, we demonstrate that IKAP is crucial for both vascular and neural development during embryogenesis and that protein function is conserved between mouse and human.


American Journal of Human Genetics | 1999

Precise genetic mapping and haplotype analysis of the familial dysautonomia gene on human chromosome 9q31.

Anat Blumenfeld; Susan A. Slaugenhaupt; Christopher B. Liebert; Violeta Temper; Channa Maayan; Sandra Gill; Diane Lucente; Maria Idelson; Kathy MacCormack; Mary Anne Monahan; James Mull; Maire Leyne; Marc L. Mendillo; Taryn A. Schiripo; Esther Mishori; Xandra O. Breakefield; Felicia B. Axelrod; James F. Gusella

Familial dysautonomia (FD) is an autosomal recessive disorder characterized by developmental arrest in the sensory and autonomic nervous systems and by Ashkenazi Jewish ancestry. We previously had mapped the defective gene (DYS) to an 11-cM segment of chromosome 9q31-33, flanked by D9S53 and D9S105. By using 11 new polymorphic loci, we now have narrowed the location of DYS to <0.5 cM between the markers 43B1GAGT and 157A3. Two markers in this interval, 164D1 and D9S1677, show no recombination with the disease. Haplotype analysis confirmed this candidate region and revealed a major haplotype shared by 435 of 441 FD chromosomes, indicating a striking founder effect. Three other haplotypes, found on the remaining 6 FD chromosomes, might represent independent mutations. The frequency of the major FD haplotype in the Ashkenazim (5 in 324 control chromosomes) was consistent with the estimated DYS carrier frequency of 1 in 32, and none of the four haplotypes associated with FD was observed on 492 non-FD chromosomes from obligatory carriers. It is now possible to provide accurate genetic testing both for families with FD and for carriers, on the basis of close flanking markers and the capacity to identify >98% of FD chromosomes by their haplotype.


American Journal of Medical Genetics Part A | 2003

Identification of the first non-Jewish mutation in familial Dysautonomia

Maire Leyne; James Mull; Sandra Gill; Math P. Cuajungco; Carole Oddoux; Anat Blumenfeld; Channa Maayan; James F. Gusella; Felicia B. Axelrod; Susan A. Slaugenhaupt

Familial Dysautonomia is an autosomal recessive disease with a remarkably high carrier frequency in the Ashkenazi Jewish population. It has recently been estimated that as many as 1 in 27 Ashkenazi Jews is a carrier of FD. The FD gene has been identified as IKBKAP, and two disease‐causing mutations have been identified. The most common mutation, which is present on 99.5% of all FD chromosomes, is an intronic splice site mutation that results in tissue‐specific skipping of exon 20. The second mutation, R696P, is a missense mutation that has been identified in 4 unrelated patients heterozygous for the major splice mutation. Interestingly, despite the fact that FD is a recessive disease, normal mRNA and protein are expressed in patient cells. To date, the diagnosis of FD has been limited to individuals of Ashkenazi Jewish descent and identification of the gene has led to widespread diagnostic and carrier testing in this population. In this report, we describe the first non‐Jewish IKBKAP mutation, a proline to leucine missense mutation in exon 26, P914L. This mutation is of particular significance because it was identified in a patient who lacks one of the cardinal diagnostic criteria for the disease–pure Ashkenazi Jewish ancestry. In light of this fact, the diagnostic criteria for FD must be expanded. Furthermore, in order to ensure carrier identification in all ethnicities, this mutation must now be considered when screening for FD.


Journal of Molecular Medicine | 2007

Therapeutic potential and mechanism of kinetin as a treatment for the human splicing disease familial dysautonomia

Matthew M. Hims; El Chérif Ibrahim; Maire Leyne; James Mull; Lijuan Liu; Conxi Lazaro; Ranjit S. Shetty; Sandra Gill; James F. Gusella; Robin Reed; Susan A. Slaugenhaupt

Mutations that affect the splicing of pre-mRNA are a major cause of human disease. Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a T to C transition at base pair 6 of IKBKAP intron 20. This mutation results in variable tissue-specific skipping of exon 20. Previously, we reported that the plant cytokinin kinetin dramatically increases exon 20 inclusion in RNA isolated from cultured FD cells. The goal of the current study was to investigate the nature of the FD splicing defect and the mechanism by which kinetin improves exon inclusion, as such knowledge will facilitate the development of future therapeutics aimed at regulating mRNA splicing. In this study, we demonstrate that treatment of FD lymphoblast cell lines with kinetin increases IKBKAP mRNA and IKAP protein to normal levels. Using a series of minigene constructs, we show that deletion of a region at the end of IKBKAP exon 20 disrupts the ability of kinetin to improve exon inclusion, pinpointing a kinetin responsive sequence element. We next performed a screen of endogenously expressed genes with multiple isoforms resulting from exon skipping events and show that kinetin’s ability to improve exon inclusion is not limited to IKBKAP. Lastly, we highlight the potential of kinetin for the treatment of other human splicing disorders by showing correction of a splicing defect in neurofibromatosis.


Pediatric Research | 2011

Kinetin improves IKBKAP mRNA splicing in patients with familial dysautonomia.

Felicia B. Axelrod; Leonard Liebes; Gabrielle Gold-von Simson; Sandra Mendoza; James Mull; Maire Leyne; Lucy Norcliffe-Kaufmann; Horacio Kaufmann; Susan A. Slaugenhaupt

Familial dysautonomia (FD) is caused by an intronic splice mutation in the IKBKAP gene that leads to partial skipping of exon 20 and tissue-specific reduction in I-κ-B kinase complex-associated protein/elongation protein 1 (IKAP/ELP-1) expression. Kinetin (6-furfurylaminopurine) has been shown to improve splicing and increase WT IKBKAP mRNA and IKAP protein expression in FD cell lines and carriers. To determine whether oral kinetin treatment could alter mRNA splicing in FD subjects and was tolerable, we administered kinetin to eight FD individuals homozygous for the splice mutation. Subjects received 23.5 mg/Kg/d for 28 d. An increase in WT IKBKAP mRNA expression in leukocytes was noted after 8 d in six of eight individuals; after 28 d, the mean increase compared with baseline was significant (p = 0.002). We have demonstrated that kinetin is tolerable in this medically fragile population. Not only did kinetin produce the desired effect on splicing in FD patients but also that effect seems to improve with time despite lack of dose change. This is the first report of a drug that produces in vivo mRNA splicing changes in individuals with FD and supports future long-term trials to determine whether kinetin will prove therapeutic in FD patients.


Nature | 2015

Mutations in DCHS1 cause mitral valve prolapse.

Ronen Durst; Kimberly Sauls; David S. Peal; Annemarieke deVlaming; Katelynn Toomer; Maire Leyne; Monica Salani; Michael E. Talkowski; Harrison Brand; Maelle Perrocheau; Charles Simpson; Christopher Jett; Matthew R. Stone; Florie A. Charles; Colby Chiang; Stacey N. Lynch; Nabila Bouatia-Naji; Francesca N. Delling; Lisa A. Freed; Christophe Tribouilloy; Thierry Le Tourneau; Hervé Lemarec; Leticia Fernandez-Friera; Jorge Solis; Daniel Trujillano; Stephan Ossowski; Xavier Estivill; Christian Dina; Patrick Bruneval; Adrian H. Chester

Mitral valve prolapse (MVP) is a common cardiac valve disease that affects nearly 1 in 40 individuals. It can manifest as mitral regurgitation and is the leading indication for mitral valve surgery. Despite a clear heritable component, the genetic aetiology leading to non-syndromic MVP has remained elusive. Four affected individuals from a large multigenerational family segregating non-syndromic MVP underwent capture sequencing of the linked interval on chromosome 11. We report a missense mutation in the DCHS1 gene, the human homologue of the Drosophila cell polarity gene dachsous (ds), that segregates with MVP in the family. Morpholino knockdown of the zebrafish homologue dachsous1b resulted in a cardiac atrioventricular canal defect that could be rescued by wild-type human DCHS1, but not by DCHS1 messenger RNA with the familial mutation. Further genetic studies identified two additional families in which a second deleterious DCHS1 mutation segregates with MVP. Both DCHS1 mutations reduce protein stability as demonstrated in zebrafish, cultured cells and, notably, in mitral valve interstitial cells (MVICs) obtained during mitral valve repair surgery of a proband. Dchs1+/− mice had prolapse of thickened mitral leaflets, which could be traced back to developmental errors in valve morphogenesis. DCHS1 deficiency in MVP patient MVICs, as well as in Dchs1+/− mouse MVICs, result in altered migration and cellular patterning, supporting these processes as aetiological underpinnings for the disease. Understanding the role of DCHS1 in mitral valve development and MVP pathogenesis holds potential for therapeutic insights for this very common disease.


Pediatric Research | 2009

Kinetin in Familial Dysautonomia Carriers: Implications for a New Therapeutic Strategy Targeting mRNA Splicing

Gabrielle Gold-von Simson; Judith D. Goldberg; Linda Rolnitzky; James Mull; Maire Leyne; Andrei Voustianiouk; Susan A. Slaugenhaupt; Felicia B. Axelrod

Familial dysautonomia (FD) is caused by an intronic splice mutation in the IκB kinase–associated protein gene (IKBKAP) that leads to partial skipping of exon 20 and tissue-specific reduction of IκB kinase–associated protein/elongator protein 1 (IKAP/ELP-1 protein). Kinetin increases IKBKAP mRNA and protein expression in FD cell lines. To determine whether oral kinetin alters IKBKAP splicing in vivo, we administered kinetin to 29 healthy carriers of the major FD mutation for 8 d. Adverse effects, kinetin, and IKBKAP mRNA levels were monitored. In the highest dosing cohorts (23.5 mg/kg/d), the target plasma kinetin level was achieved in 91% of subjects at 2 h. After 8 d, IKBKAP mRNA expression in leukocytes increased as kinetin levels increased. There is a linear association between log plasma kinetin level and corresponding log change from baseline in IKBKAP mRNA expression that allows estimation of IKBKAP mRNA levels because of kinetin ingestion. Adverse effects were transient and mild. This is the first report of in vivo IKBKAP splicing modification and strongly suggests kinetins therapeutic potential in FD and perhaps in other splicing disorders. Furthermore, our findings support our hypothesis that treatments, which target a particular splicing mutation, can be successfully developed.

Collaboration


Dive into the Maire Leyne's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Math P. Cuajungco

California State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christiane M. Robbins

Translational Genomics Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge