Maite Jauregui-Osoro
St Thomas' Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maite Jauregui-Osoro.
Angewandte Chemie | 2011
Rafael T. M. de Rosales; Richard Tavaré; Rowena L. Paul; Maite Jauregui-Osoro; Andrea Protti; Arnaud Pierre Alain Glaria; Gopal Varma; Istvan Szanda; Philip J. Blower
The synergistic combination of positron emission tomography (PET) and magnetic resonance imaging (MRI) is likely to become the next generation of dual-modality scanners in medical imaging. These instruments will provide us with accurate diagnoses thanks to the sensitive and quantifiable signal of PET and the high soft-tissue resolution of MRI. Furthermore, patients will receive less radiation dose and spend less time in the procedure relative to current dual-modality scanners (e.g. PET–computed tomography (CT)). As a consequence, there has been increasing interest recently in the development of dual-modality PET–MRI agents.[1]
Biomaterials | 2014
Xianjin Cui; Salome Belo; Dirk Krüger; Yong Yan; Rafael T. M. de Rosales; Maite Jauregui-Osoro; Haitao Ye; Shi Su; Domokos Máthé; Noémi Kovács; Ildiko Horvath; Mariann Semjeni; Kavitha Sunassee; Krisztián Szigeti; Mark Green; Philip J. Blower
Magnetic nanoparticles (NPs) MnFe2O4 and Fe3O4 were stabilised by depositing an Al(OH)3 layer via a hydrolysis process. The particles displayed excellent colloidal stability in water and a high affinity to [18F]-fluoride and bisphosphonate groups. A high radiolabeling efficiency, 97% for 18F-fluoride and 100% for 64Cu-bisphosphonate conjugate, was achieved by simply incubating NPs with radioactivity solution at room temperature for 5 min. The properties of particles were strongly dependant on the thickness and hardness of the Al(OH)3 layer which could in turn be controlled by the hydrolysis method. The application of these Al(OH)3 coated magnetic NPs in molecular imaging has been further explored. The results demonstrated that these NPs are potential candidates as dual modal probes for MR and PET. In vivo PET imaging showed a slow release of 18F from NPs, but no sign of efflux of 64Cu.
IEEE Transactions on Nuclear Science | 2010
Jane E. Mackewn; Philip Halsted; Geoffrey Charles-Edwards; Richard Page; John J. Totman; Kavitha Sunassee; D Strul; William A. Hallett; Maite Jauregui-Osoro; Peter Liepins; Steven Williams; Tobias Schaeffter; Stephen Keevil; Paul Marsden
We have designed and constructed an MR-compatible PET system for fully simultaneous PET/MR studies of small animals. The scanner uses long optical fibers to distance the magnetic field sensitive PET PMTs from the high magnetic field at the center of an MR scanner. It is a single slice system with an inner diameter of 7 cm. A full evaluation of the performance of the PET system and the results of an MR compatibility assessment in a Philips Achieva whole body 3 T MRI scanner are presented. The reconstructed resolution of the PET scanner is 1.5 mm at the center falling to 2.5 mm at the edge of the field of view; the system sensitivity is 0.95%; the count rate is linear up to an activity of 6 MBq (~4 kcps) and the scatter fraction is 42% which can be reduced to 26% using MR-compatible gamma shields. Simultaneous PET/MR images of phantoms and a mouse have been acquired. The system is highly MR compatible, as demonstrated here, showing no degradation in performance of either the MR or PET system in the presence of the other modality. The system will be used to demonstrate novel pre-clinical applications of simultaneous PET/MR.
Dalton Transactions | 2011
Maite Jauregui-Osoro; Peter Williamson; Arnaud Pierre Alain Glaria; Kavitha Sunassee; Putthiporn Charoenphun; Mark Green; Gregory Mullen; Philip J. Blower
A wide selection of insoluble nanoparticulate metal salts was screened for avid binding of [(18)F]-fluoride. Hydroxyapatite and aluminium hydroxide nanoparticles showed particularly avid and stable binding of [(18)F]-fluoride in various biological media. The in vivo behaviour of the [(18)F]-labelled hydroxyapatite and aluminium hydroxide particles was determined by PET-CT imaging in mice. [(18)F]-labelled hydroxyapatite was stable in circulation and when trapped in various tissues (lung embolisation, Subcutaneous and intramuscular), but accumulation in liver via reticuloendothelial clearance was followed by gradual degradation and release of [(18)F]-fluoride (over a period of 4 h) which accumulated in bone. [(18)F]-labelled aluminium hydroxide was also cleared to liver and spleen but degraded slightly even without liver uptake (Subcutaneous and intramuscular). Both materials have properties that are an attractive basis for the design of molecular targeted PET imaging agents labelled with (18)F.
Bioconjugate Chemistry | 2016
Xianjin Cui; Domokos Máthé; Noémi Kovács; Ildiko Horvath; Maite Jauregui-Osoro; Rafael T. M. de Rosales; Gregory Mullen; Wilson Wong; Yong Yan; Dirk Krüger; Andrei N. Khlobystov; Maria del Carmen Gimenez-Lopez; Mariann Semjeni; Krisztián Szigeti; Dániel S. Veres; Haizhou Lu; Ignacio Hernández; W. P. Gillin; Andrea Protti; Katalin Kis Petik; Mark Green; Philip J. Blower
Multimodal nanoparticulate materials are described, offering magnetic, radionuclide, and fluorescent imaging capabilities to exploit the complementary advantages of magnetic resonance imaging (MRI), positron emission tomography/single-photon emission commuted tomography (PET/SPECT), and optical imaging. They comprise Fe3O4@NaYF4 core/shell nanoparticles (NPs) with different cation dopants in the shell or core, including Co0.16Fe2.84O4@NaYF4(Yb, Er) and Fe3O4@NaYF4(Yb, Tm). These NPs are stabilized by bisphosphonate polyethylene glycol conjugates (BP-PEG), and then show a high transverse relaxivity (r2) up to 326 mM(-1) s(-1) at 3T, a high affinity to [(18)F]-fluoride or radiometal-bisphosphonate conjugates (e.g., (64)Cu and (99m)Tc), and fluorescent emissions from 500 to 800 nm under excitation at 980 nm. The biodistribution of intravenously administered particles determined by PET/MR imaging suggests that negatively charged Co0.16Fe2.84O4@NaYF4(Yb, Er)-BP-PEG (10K) NPs cleared from the blood pool more slowly than positively charged NPs Fe3O4@NaYF4(Yb, Tm)-BP-PEG (2K). Preliminary results in sentinel lymph node imaging in mice indicate the advantages of multimodal imaging.
Nuclear Medicine Communications | 2011
Amanda J. Weeks; Maite Jauregui-Osoro; Marcel Cleij; Julia Elizabeth Blower; James R. Ballinger; Philip J. Blower
PurposeAccumulation of iodide and other substrates via the human sodium/iodide symporter (hNIS) is fundamental to imaging and therapy of thyroid disease, hNIS reporter gene imaging and hNIS-mediated gene therapy. There is no readily available positron emission tomography (PET) tracer for hNIS. Our aim was to develop a colon carcinoma cell line stably expressing hNIS, and use it to evaluate a novel hNIS PET tracer, [18F]-tetrafluoroborate. MethodsColon carcinoma cell line, HCT116, was stably transfected with hNIS, thus producing a cell line, HCT116-C19, with high hNIS expression. A Fisher rat thyroid cell line, FRTL5, which expresses rat sodium/iodide symporter when stimulated with thyroid-stimulating hormone, was used for comparison. Accumulation of [188Re]-perrhenate, [99mTc]-pertechnetate and [18F]-tetrafluoroborate was evaluated with and without perchlorate inhibition using an automated radioimmune assay system, LigandTracer. The affinity of [18F]-tetrafluoroborate for hNIS, and its half-maximal inhibitory concentration (IC50) for the inhibition of [99mTc]-pertechnetate transport were determined from the plateau accumulation of [18F]-tetrafluoroborate and [99mTc]-pertechnetate, respectively, as a function of tetrafluoroborate concentration. Results[18F]-tetrafluoroborate accumulated effectively in both FRTL5 and HCT116-C19 cells. The accumulation in HCT116-C19 cells (plateau accumulation 31%) was comparable to that of [188Re]-perrhenate (41%) and [99mTc]-pertechnetate (46%). Its affinity for hNIS and half-maximal inhibitory concentration (IC50) for the inhibition of pertechnetate uptake was approximately micromolar. ConclusionWe have produced a human colon cell line with a stable constitutive expression of functional hNIS (HCT116-hNIS-C19). [18F]-tetrafluoroborate accumulates in cells expressing hNIS or rat sodium/iodide symporter and is a potential PET imaging agent in thyroid disease and hNIS reporter gene imaging.
Chemical Communications | 2013
Carmen R. Maldonado; Nina Gómez-Blanco; Maite Jauregui-Osoro; Valerie G. Brunton; Luis Yate; Juan C. Mareque-Rivas
The fac-[(99m)Tc(OH2)3(CO)3](+) complex reacts with QD-filled micelles to create a bimodal SPECT-optical imaging probe which upon visible light irradiation generates cisplatin from an inert Pt(IV) prodrug.
Small | 2014
Macarena Cobaleda-Siles; Malou Henriksen-Lacey; Ane Ruiz de Angulo; Anja Bernecker; Vanessa Gómez Vallejo; Boguslaw Szczupak; Jordi Llop; Géraldine Pastor; Sandra Plaza-García; Maite Jauregui-Osoro; Levente K. Meszaros; Juan C. Mareque-Rivas
The success of nanoparticle-based therapies will depend in part on accurate delivery to target receptors and organs. There is, therefore, considerable potential in nanoparticles which achieve delivery of the right drug(s) using the right route of administration to the right location at the right time, monitoring the process by non-invasive molecular imaging. A challenge is harnessing immunotherapy via activation of Toll-like receptors (TLRs) for the development of vaccines against major infectious diseases and cancer. In immunotherapy, delivery of the vaccine components to lymph nodes (LNs) is essential for effective stimulation of the immune response. Although some promising advances have been made, delivering therapeutics to LNs remains challenging. It is here shown that iron-oxide nanoparticles can be engineered to combine in a single and small (<50 nm) nanocarrier complementary multimodal imaging features with the immunostimulatory activity of polyinosinic-polycytidylic acid (poly (I:C)). Whilst the fluorescence properties of the nanocarrier show effective delivery to endosomes and TLR3 in antigen presenting cells, MRI/SPECT imaging reveals effective delivery to LNs. Importantly, in vitro and in vivo studies show that, using this nanocarrier, the immunostimulatory activity of poly (I:C) is greatly enhanced. These nanocarriers have considerable potential for cancer diagnosis and the development of new targeted and programmable immunotherapies.
The Journal of Nuclear Medicine | 2017
Jim O’Doherty; Maite Jauregui-Osoro; Teresa Brothwood; Teresa Szyszko; Paul Marsden; Michael J. O’Doherty; Gary Cook; Philip J. Blower; Val Lewington
We report the safety, biodistribution, and internal radiation dosimetry, in humans with thyroid cancer, of 18F-tetrafluoroborate (18F-TFB), a novel PET radioligand for imaging the human sodium/iodide symporter (hNIS). Methods: Serial whole-body PET scans of 5 subjects with recently diagnosed thyroid cancer were acquired before surgery for up to 4 h after injection of 184 ± 15 MBq of 18F-TFB. Activity was determined in whole blood, plasma, and urine. Mean organ-absorbed doses and effective doses were calculated via quantitative image analysis and using OLINDA/EXM software. Results: Images showed a high uptake of 18F-TFB in known areas of high hNIS expression (thyroid, salivary glands, and stomach). Excretion was predominantly renal. No adverse effects in relation to safety of the radiopharmaceutical were observed. The effective dose was 0.0326 ± 0.0018 mSv/MBq. The critical tissues/organs receiving the highest mean sex-averaged absorbed doses were the thyroid (0.135 ± 0.079 mSv/MBq), stomach (0.069 ± 0.022 mSv/MBq), and salivary glands (parotids, 0.031 ± 0.011 mSv/MBq; submandibular, 0.061 ± 0.031 mSv/MBq). Other organs of interest were the bladder (0.102 ± 0.046 mSv/MBq) and kidneys (0.029 ± 0.009 mSv/MBq). Conclusion: Imaging using 18F-TFB imparts a radiation exposure similar in magnitude to many other 18F-labeled radiotracers. 18F-TFB shows a biodistribution similar to 99mTc-pertechnetate, a known nonorganified hNIS tracer, and is pharmacologically and radiobiologically safe in humans. Phase 2 trials for 18F-TFB as an hNIS imaging agent are warranted.
Scientific Reports | 2017
Seckou Diocou; Alessia Volpe; Maite Jauregui-Osoro; Mehdi Boudjemeline; Krisanat Chuamsaamarkkee; F. Man; Philip J. Blower; Tony Ng; Gregory Mullen; Gilbert O. Fruhwirth
Cancer cell metastasis is responsible for most cancer deaths. Non-invasive in vivo cancer cell tracking in spontaneously metastasizing tumor models still poses a challenge requiring highest sensitivity and excellent contrast. The goal of this study was to evaluate if the recently introduced PET radiotracer [18F]tetrafluoroborate ([18F]BF4−) is useful for sensitive and specific metastasis detection in an orthotopic xenograft breast cancer model expressing the human sodium iodide symporter (NIS) as a reporter. In vivo imaging was complemented by ex vivo fluorescence microscopy and γ-counting of harvested tissues. Radionuclide imaging with [18F]BF4− (PET/CT) was compared to the conventional tracer [123I]iodide (sequential SPECT/CT). We found that [18F]BF4− was superior due to better pharmacokinetics, i.e. faster tumor uptake and faster and more complete clearance from circulation. [18F]BF4−-PET was also highly specific as in all detected tissues cancer cell presence was confirmed microscopically. Undetected comparable tissues were similarly found to be free of metastasis. Metastasis detection by routine metabolic imaging with [18F]FDG-PET failed due to low standard uptake values and low contrast caused by adjacent metabolically active organs in this model. [18F]BF4−-PET combined with NIS expressing disease models is particularly useful whenever preclinical in vivo cell tracking is of interest.