Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maja Hempel is active.

Publication


Featured researches published by Maja Hempel.


The Lancet | 2012

Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study

Anita Rauch; Dagmar Wieczorek; Elisabeth Graf; Thomas Wieland; Sabine Endele; Thomas Schwarzmayr; Beate Albrecht; Deborah Bartholdi; Jasmin Beygo; Nataliya Di Donato; Andreas Dufke; Kirsten Cremer; Maja Hempel; Denise Horn; Juliane Hoyer; Pascal Joset; Albrecht Röpke; Ute Moog; Angelika Riess; Christian Thiel; Andreas Tzschach; Antje Wiesener; Eva Wohlleber; Christiane Zweier; Arif B. Ekici; Alexander M. Zink; Andreas Rump; Christa Meisinger; Harald Grallert; Heinrich Sticht

BACKGROUND The genetic cause of intellectual disability in most patients is unclear because of the absence of morphological clues, information about the position of such genes, and suitable screening methods. Our aim was to identify de-novo variants in individuals with sporadic non-syndromic intellectual disability. METHODS In this study, we enrolled children with intellectual disability and their parents from ten centres in Germany and Switzerland. We compared exome sequences between patients and their parents to identify de-novo variants. 20 children and their parents from the KORA Augsburg Diabetes Family Study were investigated as controls. FINDINGS We enrolled 51 participants from the German Mental Retardation Network. 45 (88%) participants in the case group and 14 (70%) in the control group had de-novo variants. We identified 87 de-novo variants in the case group, with an exomic mutation rate of 1·71 per individual per generation. In the control group we identified 24 de-novo variants, which is 1·2 events per individual per generation. More participants in the case group had loss-of-function variants than in the control group (20/51 vs 2/20; p=0·022), suggesting their contribution to disease development. 16 patients carried de-novo variants in known intellectual disability genes with three recurrently mutated genes (STXBP1, SYNGAP1, and SCN2A). We deemed at least six loss-of-function mutations in six novel genes to be disease causing. We also identified several missense alterations with potential pathogenicity. INTERPRETATION After exclusion of copy-number variants, de-novo point mutations and small indels are associated with severe, sporadic non-syndromic intellectual disability, accounting for 45-55% of patients with high locus heterogeneity. Autosomal recessive inheritance seems to contribute little in the outbred population investigated. The large number of de-novo variants in known intellectual disability genes is only partially attributable to known non-specific phenotypes. Several patients did not meet the expected syndromic manifestation, suggesting a strong bias in present clinical syndrome descriptions. FUNDING German Ministry of Education and Research, European Commission 7th Framework Program, and Swiss National Science Foundation.


Human Mutation | 2010

Identification of FOXP1 deletions in three unrelated patients with mental retardation and significant speech and language deficits

Denise Horn; Johannes Kapeller; Núria Rivera-Brugués; Ute Moog; Bettina Lorenz-Depiereux; Sebastian H. Eck; Maja Hempel; Janine Wagenstaller; Alex J.T. Gawthrope; Anthony P. Monaco; Michael Bonin; Olaf Riess; Eva Wohlleber; Thomas Illig; Connie R. Bezzina; Andre Franke; Stephanie Spranger; Pablo Villavicencio-Lorini; Wenke Seifert; Jochen Rosenfeld; Eva Klopocki; Gudrun Rappold; Tim M. Strom

Mental retardation affects 2‐3% of the population and shows a high heritability. Neurodevelopmental disorders that include pronounced impairment in language and speech skills occur less frequently. For most cases, the molecular basis of mental retardation with or without speech and language disorder is unknown due to the heterogeneity of underlying genetic factors. We have used molecular karyotyping on 1523 patients with mental retardation to detect copy number variations (CNVs) including deletions or duplications. These studies revealed three heterozygous overlapping deletions solely affecting the forkhead box P1 (FOXP1) gene. All three patients had moderate mental retardation and significant language and speech deficits. Since our results are consistent with a de novo occurrence of these deletions, we considered them as causal although we detected a single large deletion including FOXP1 and additional genes in 4104 ancestrally matched controls. These findings are of interest with regard to the structural and functional relationship between FOXP1 and FOXP2. Mutations in FOXP2 have been previously related to monogenic cases of developmental verbal dyspraxia. Both FOXP1 and FOXP2 are expressed in songbird and human brain regions that are important for the developmental processes that culminate in speech and language. ©2010 Wiley‐Liss, Inc.


Brain | 2017

Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

Markus Wolff; Katrine Johannesen; Ulrike B. S. Hedrich; Silvia Masnada; Guido Rubboli; Elena Gardella; Gaetan Lesca; Dorothée Ville; Mathieu Milh; Laurent Villard; Alexandra Afenjar; Sandra Chantot-Bastaraud; Cyril Mignot; Caroline Lardennois; Caroline Nava; Niklas Schwarz; Marion Gerard; Laurence Perrin; Diane Doummar; Stéphane Auvin; Maria J Miranda; Maja Hempel; Eva H. Brilstra; N.V.A.M. Knoers; Nienke E. Verbeek; Marjan van Kempen; Kees P. J. Braun; Grazia M.S. Mancini; Saskia Biskup; Konstanze Hörtnagel

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Journal of Medical Genetics | 2012

Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion

Eva Klopocki; Silke Lohan; Sandra C. Doelken; Sigmar Stricker; Charlotte W. Ockeloen; Renata Soares Thiele de Aguiar; Karina Lezirovitz; Regina C. Mingroni Netto; Aleksander Jamsheer; Hitesh Shah; Ingo Kurth; Rolf Habenicht; Matthew L. Warman; Koenraad Devriendt; Ulrike Kordaß; Maja Hempel; Anna Rajab; Outi Mäkitie; Mohammed Naveed; Uppala Radhakrishna; Denise Horn; Stefan Mundlos

Background Split-hand/foot malformation (SHFM)—also known as ectrodactyly—is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1–6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. Methods High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. Results Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A ∼11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. Conclusions Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.


Journal of Inherited Metabolic Disease | 2012

Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van Laere syndrome.

Tobias B. Haack; Christine Makowski; Yoshiaki Yao; Elisabeth Graf; Maja Hempel; Thomas Wieland; Ulrike Tauer; Uwe Ahting; Johannes A. Mayr; Peter Freisinger; Hiroki Yoshimatsu; Ken Inui; Tim M. Strom; Thomas Meitinger; Atsushi Yonezawa; Holger Prokisch

Brown-Vialetto-Van Laere syndrome (BVVLS [MIM 211530]) is a rare neurological disorder characterized by infancy onset sensorineural deafness and ponto-bulbar palsy. Mutations in SLC52A3 (formerly C20orf54), coding for riboflavin transporter 2 (hRFT2), have been identified as the molecular genetic correlate in several individuals with BVVLS. Exome sequencing of just one single case revealed that compound heterozygosity for two pathogenic mutations in the SLC52A2 gene coding for riboflavin transporter 3 (hRFT3), another member of the riboflavin transporter family, is also associated with BVVLS. Overexpression studies confirmed that the gene products of both mutant alleles have reduced riboflavin transport activities. While mutations in SLC52A3 cause decreased plasma riboflavin levels, concordant with a role of SLC52A3 in riboflavin uptake from food, the SLC52A2-mutant individual had normal plasma riboflavin concentrations, a finding in line with a postulated function of SLC52A2 in riboflavin uptake from blood into target cells. Our results contribute to the understanding of human riboflavin metabolism and underscore its role in the pathogenesis of BVVLS, thereby providing a rational basis for a high-dose riboflavin treatment.


Frontiers in Genetics | 2015

Clinical, biochemical, and genetic spectrum of seven patients with NFU1 deficiency

Uwe Ahting; Johannes A. Mayr; Arnaud Vanlander; Steven A. Hardy; Saikat Santra; Christine Makowski; Charlotte L. Alston; Franz A. Zimmermann; Lucia Abela; Barbara Plecko; Marianne Rohrbach; Stephanie Spranger; Sara Seneca; Boris Rolinski; Angela Hagendorff; Maja Hempel; Wolfgang Sperl; Thomas Meitinger; Joél Smet; Robert W. Taylor; Rudy Van Coster; Peter Freisinger; Holger Prokisch; Tobias B. Haack

Disorders of the mitochondrial energy metabolism are clinically and genetically heterogeneous. An increasingly recognized subgroup is caused by defective mitochondrial iron–sulfur (Fe–S) cluster biosynthesis, with defects in 13 genes being linked to human disease to date. Mutations in three of them, NFU1, BOLA3, and IBA57, affect the assembly of mitochondrial [4Fe–4S] proteins leading to an impairment of diverse mitochondrial metabolic pathways and ATP production. Patients with defects in these three genes present with lactic acidosis, hyperglycinemia, and reduced activities of respiratory chain complexes I and II, the four lipoic acid-dependent 2-oxoacid dehydrogenases and the glycine cleavage system (GCS). To date, five different NFU1 pathogenic variants have been reported in 15 patients from 12 families. We report on seven new patients from five families carrying compound heterozygous or homozygous pathogenic NFU1 mutations identified by candidate gene screening and exome sequencing. Six out of eight different disease alleles were novel and functional studies were performed to support the pathogenicity of five of them. Characteristic clinical features included fatal infantile encephalopathy and pulmonary hypertension leading to death within the first 6 months of life in six out of seven patients. Laboratory investigations revealed combined defects of pyruvate dehydrogenase complex (five out of five) and respiratory chain complexes I and II+III (four out of five) in skeletal muscle and/or cultured skin fibroblasts as well as increased lactate (five out of six) and glycine concentration (seven out of seven). Our study contributes to a better definition of the phenotypic spectrum associated with NFU1 mutations and to the diagnostic workup of future patients.


Prenatal Diagnosis | 2014

Diagnostic accuracy of random massively parallel sequencing for non‐invasive prenatal detection of common autosomal aneuploidies: a collaborative study in Europe

Markus Stumm; Michael Entezami; Karsten Haug; Cornelia Blank; Max Wüstemann; Bernt Schulze; Gisela Raabe-Meyer; Maja Hempel; Markus Schelling; E. Ostermayer; Sabine Langer-Freitag; Tilo Burkhardt; Roland Zimmermann; Tina Schleicher; Bernd Weil; Ulrike Schöck; Patricia Smerdka; Sebastian Grömminger; Yadhu Kumar; Wera Hofmann

The objective of this study is to validate the diagnostic accuracy of a non‐invasive prenatal test for detecting trisomies 13, 18, and 21 for a population in Germany and Switzerland.


Journal of Medical Genetics | 2011

Cohen syndrome diagnosis using whole genome arrays

Núria Rivera-Brugués; Beate Albrecht; Dagmar Wieczorek; Heinrich Schmidt; Thomas Keller; Ina Göhring; Arif B. Ekici; Andreas Tzschach; Masoud Garshasbi; Kathlen Franke; Norman Klopp; Heinz-Erich Wichmann; Thomas Meitinger; Tim M. Strom; Maja Hempel

Background Cohen syndrome is a rare autosomal recessive disorder with a complex phenotype including psychomotor retardation, microcephaly, obesity with slender extremities, joint laxity, progressive chorioretinal dystrophy/myopia, intermittent isolated neutropenia, a cheerful disposition, and characteristic facial features. The COH1 gene, which contains 62 exons, is so far the only gene known to be associated with Cohen syndrome. Point mutations, deletions and duplications have been described in this gene. Oligonucleotide arrays have reached a resolution which allows the detection of intragenic deletions and duplications, especially in large genes such as COH1. Method and results High density oligonucleotide array data from patients with unexplained mental retardation (n=1523) and normal controls (n=1612) were analysed for copy number variation (CNV) changes. Intragenic heterozygous deletions in the COH1 gene were detected in three patients but no such changes were detected in the controls. Subsequent sequencing of the COH1 gene revealed point mutations in the second allele in all three patients analysed. Conclusion Genome-wide CNV screening with high density arrays provides a tool to detect intragenic deletions in the COH1 gene. This report presents an example of how microarrays can be used to identify autosomal recessive syndromes and to extend the phenotypic and mutational spectrum of recessive disorders.


Movement Disorders | 2013

Mitochondrial membrane protein associated neurodegenration: A novel variant of neurodegeneration with brain iron accumulation

Eva C. Schulte; Malte C. Claussen; Angela Jochim; Tobias B. Haack; Monika Hartig; Maja Hempel; Holger Prokisch; Ursula Haun‐Jünger; Juliane Winkelmann; Bernhard Hemmer; Annette Förschler; Rüdiger Ilg

Recently, mutations in an open‐reading frame on chromosome 19 (C19orf12) were identified as a novel genetic factor in neurodegeneration with brain iron accumulation (NBIA). Because of the mitochondrial localization of the derived protein, this variant is referred to as mitochondrial membrane protein‐associated neurodegeneration with brain iron accumulation (MPAN).


American Journal of Medical Genetics Part A | 2009

Microdeletion syndrome 16p11.2-p12.2: clinical and molecular characterization.

Maja Hempel; Nuria Rivera Brugués; Janine Wagenstaller; Gaby Lederer; Andrea Weitensteiner; Heide Seidel; Thomas Meitinger; Tim M. Strom

The pericentromeric region on 16p appears to be susceptible to chromosomal rearrangements and several patients with rearrangements in this region have been described. We report on a further patient with a microdeletion 16p11.2‐p12.2 in the context of described patients with a deletion in the pericentromeric region of 16p. Minor facial anomalies, feeding difficulties, significant delay in speech development, and recurrent ear infections are common symptoms of the microdeletion syndrome 16p11.2‐p12.2. All reported patients so far share a common distal breakpoint at 16p12.2 but vary in the proximal breakpoint at 16p11.2. The microdeletion 16p11.2‐p12.2 should be distinguished from the ∼500 kb microdeletion in 16p11.2 which seems to be associated with autism but not with facial manifestations, feeding difficulties, or developmental delay.

Collaboration


Dive into the Maja Hempel's collaboration.

Top Co-Authors

Avatar

Peter Freisinger

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Regina Trollmann

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dagmar Wieczorek

University of Duisburg-Essen

View shared research outputs
Researchain Logo
Decentralizing Knowledge