Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Majida Charif is active.

Publication


Featured researches published by Majida Charif.


American Journal of Human Genetics | 2010

Mutations in TPRN Cause a Progressive Form of Autosomal-Recessive Nonsyndromic Hearing Loss

Yun Li; Esther Pohl; Redouane Boulouiz; Margit Schraders; Gudrun Nürnberg; Majida Charif; Ronald J.C. Admiraal; Simon von Ameln; Ingelore Baessmann; Mostafa Kandil; Joris A. Veltman; Peter Nürnberg; Christian Kubisch; Abdelhamid Barakat; Hannie Kremer; Bernd Wollnik

We performed genome-wide homozygosity mapping in a large consanguineous family from Morocco and mapped the autosomal-recessive nonsyndromic hearing loss (ARNSHL) in this family to the DFNB79 locus on chromosome 9q34. By sequencing of 62 positional candidate genes of the critical region, we identified a causative homozygous 11 bp deletion, c.42_52del, in the TPRN gene in all seven affected individuals. The deletion is located in exon 1 and results in a frameshift and premature protein truncation (p.Gly15AlafsX150). Interestingly, the deleted sequence is part of a repetitive and CG-rich motive predicted to be prone to structural aberrations during crossover formation. We identified another family with progressive ARNSHL linked to this locus, whose affected members were shown to carry a causative 1 bp deletion (c.1347delG) in exon 1 of TPRN. The function of the encoded protein, taperin, is unknown; yet, partial homology to the actin-caping protein phostensin suggests a role in actin dynamics.


PLOS ONE | 2012

Association of Spermatogenic Failure with the b2/b3 Partial AZFc Deletion

Abdelmajid Eloualid; Houria Rhaissi; Ahmed Reguig; Safaa Bounaceur; Brahim El Houate; Omar Abidi; Majida Charif; Noureddine Louanjli; Elbakkay Chadli; Abdelhamid Barakat; Anu Bashamboo; Ken McElreavey; Hassan Rouba

Infertility affects around 1 in 10 men and in most cases the cause is unknown. The Y chromosome plays an important role in spermatogenesis and specific deletions of this chromosome, the AZF deletions, are associated with spermatogenic failure. Recently partial AZF deletions have been described but their association with spermatogenic failure is unclear. Here we screened a total of 339 men with idiopathic spermatogenic failure, and 256 normozoospermic ancestry-matched men for chromosome microdeletions including AZFa, AZFb, AZFc, and the AZFc partial deletions (gr/gr, b1/b3 and b2/b3). AZFa and AZFc deletions were identified in men with severe spermatogenic failure at similar frequencies to those reported elsewhere. Gr/gr deletions were identified in case and control populations at 5.83% and 6.25% respectively suggesting that these deletions are not associated with spermatogenic failure. However, b2/b3 deletions were detected only in men with spermatogenic failure and not in the normospermic individuals. Combined with our previous data this shows an association of the b2/b3 deletion (p = 0.0318) with spermatogenic failure in some populations. We recommend screening for this deletion in men with unexplained spermatogenic failure.


PLOS ONE | 2012

Association of the MTHFR A1298C Variant with Unexplained Severe Male Infertility

Abdelmajid Eloualid; Omar Abidi; Majida Charif; Brahim El Houate; Houda Benrahma; Noureddine Louanjli; Elbakkay Chadli; Maria Ajjemami; Abdelhamid Barakat; Anu Bashamboo; Ken McElreavey; Houria Rhaissi; Hassan Rouba

The methylenetetrahydrofolate reductase (MTHFR) gene is one of the main regulatory enzymes involved in folate metabolism, DNA synthesis and remethylation reactions. The influence of MTHFR variants on male infertility is not completely understood. The objective of this study was to analyze the distribution of the MTHFR C677T and A1298C variants using PCR-Restriction Fragment Length Polymorphism (RFLP) in a case group consisting of 344 men with unexplained reduced sperm counts compared to 617 ancestry-matched fertile or normozoospermic controls. The Chi square test was used to analyze the genotype distributions of MTHFR polymorphisms. Our data indicated a lack of association of the C677T variant with infertility. However, the homozygous (C/C) A1298C polymorphism of the MTHFR gene was present at a statistically high significance in severe oligozoospermia group compared with controls (OR = 3.372, 95% confidence interval CI = 1.27–8.238; p = 0.01431). The genotype distribution of the A1298C variants showed significant deviation from the expected Hardy-Weinberg equilibrium, suggesting that purifying selection may be acting on the 1298CC genotype. Further studies are necessary to determine the influence of the environment, especially the consumption of diet folate on sperm counts of men with different MTHFR variants.


International Journal of Pediatric Otorhinolaryngology | 2010

Prevalence of the mitochondrial A 1555G mutation in Moroccan patients with non-syndromic hearing loss

Halima Nahili; Majida Charif; Redouane Boulouiz; Safaa Bounaceur; Houda Benrahma; Omar Abidi; Abdelaziz Chafik; Hassan Rouba; Mostafa Kandil; Abdelhamid Barakat

UNLABELLED Mutations in mitochondrial DNA (mtDNA), especially the A1555G transition in the 12S rRNA gene, are one of the causes of both aminoglycoside-induced and non-syndromic sensorineural hearing loss. OBJECTIVE The aim of this study was to determine the prevalence of the A1555G mitochondrial mutation in Moroccan patients. METHODS We performed molecular characterization by PCR-RFLP and direct sequencing of one hundred and sixty four patients (84 unrelated familial and 80 sporadic cases) with a congenital sensorineural non-syndromic hearing loss and one hundred normal hearing controls for the occurrence of the A1555G mutation. RESULTS Mutational analysis of the mtDNA showed the presence of the homoplasmic A1555G mutation in three families, leading to a frequency of 3.6% similar to that reported for European-populations. No A1555G mutation was detected in sporadic and controls cases. However, we detected in twenty normal hearing controls a novel polymorphism A1557C, which was not found in patient samples. We further evidenced the presence of the A1438G mitochondrial polymorphism in four patients with sensorineural hearing loss and in five controls. CONCLUSION Our results show that the occurrence of the A1555G mutation in hearing impaired patients accounts for 3.6% in a Moroccan patients and those novel mtDNA polymorphisms might contribute to a novel sub-haplogroup specific of the Magrheb.


Gene | 2015

A novel mutation in the TMC1 gene causes non-syndromic hearing loss in a Moroccan family

Amina Bakhchane; Hicham Charoute; Halima Nahili; Rachida Roky; Hassan Rouba; Majida Charif; Guy Lenaers; Abdelhamid Barakat

Autosomal recessive non-syndromic hearing loss (ARNSHL) is one of the most common genetic diseases in human and is subject to important genetic heterogeneity, rendering molecular diagnosis difficult. Whole-exome sequencing is thus a powerful strategy for this purpose. After excluding GJB2 mutation and other common mutations associated with hearing loss in Morocco, whole-exome sequencing was performed to study the genetic causes of one sibling with ARSHNL in a consanguineous Moroccan family. After filtering data and Sanger sequencing validation, one novel pathogenic homozygous mutation c.1810C>G (p.Arg604Gly) was identified in TMC1, a gene reported to cause deafness in various populations. Thus, we identified here the first mutation in the TMC1 gene in the Moroccan population causing non-syndromic hearing loss.


Biochemical and Biophysical Research Communications | 2012

Molecular analysis of the TMPRSS3 gene in Moroccan families with non-syndromic hearing loss.

Majida Charif; Omar Abidi; Redouane Boulouiz; Halima Nahili; Hassan Rouba; Mostafa Kandil; Benjamin Delprat; Guy Lenaers; Abdelhamid Barakat

Autosomal recessive non-syndromic hearing impairment (ARNSHI) is the most common type of inherited hearing impairment, accounting for approximately 80% of inherited prelingual hearing impairment. Hearing loss is noted to be both phenotypically and genetically heterogeneous. Mutations in the TMPRSS3 gene, which encodes a transmembrane serine protease, are known to cause autosomal recessive non-syndromic hearing impairment DFNB8/10. In order to elucidate if the TMPRSS3 gene is responsible for ARNSHI in 80 Moroccan families with non-syndromic hearing impairment, the gene was sequenced using DNA samples from these families. Nineteen TMPRSS3 variants were found, nine are located in the exons among which six are missense and three are synonymous. The 10 remaining variations are located in non-coding regions. Missense variants analysis show that they do not have a significant pathogenic effect on protein while pathogenicity of some variant remains under discussion. Thus we show that the TMPRSS3 gene is not a major contributor to non-syndromic deafness in the Moroccan population.


PLOS ONE | 2015

Recessive TBC1D24 Mutations Are Frequent in Moroccan Non-Syndromic Hearing Loss Pedigrees.

Amina Bakhchane; Majida Charif; Sara Salime; Redouane Boulouiz; Halima Nahili; Rachida Roky; Guy Lenaers; Abdelhamid Barakat

Mutations in the TBC1D24 gene are responsible for four neurological presentations: infantile epileptic encephalopathy, infantile myoclonic epilepsy, DOORS (deafness, onychodystrophy, osteodystrophy, mental retardation and seizures) and NSHL (non-syndromic hearing loss). For the latter, two recessive (DFNB86) and one dominant (DFNA65) mutations have so far been identified in consanguineous Pakistani and European/Chinese families, respectively. Here we report the results of a genetic study performed on a large Moroccan cohort of deaf patients that identified three families with compound heterozygote mutations in TBC1D24. Four novel mutations were identified, among which, one c.641G>A (p.Arg214His) was present in the three families, and has a frequency of 2% in control Moroccan population with normal hearing, suggesting that it acts as an hypomorphic variant leading to restricted deafness when combined with another recessive severe mutation. Altogether, our results show that mutations in TBC1D24 gene are a frequent cause (>2%) of NSHL in Morocco, and that due to its possible compound heterozygote recessive transmission, this gene should be further considered and screened in other deaf cohorts.


Gene | 2013

Analysis of CLDN14 gene in deaf Moroccan patients with non-syndromic hearing loss.

Majida Charif; Amina Bakhchane; Omar Abidi; Redouane Boulouiz; Abdelmajid Eloualid; Rachida Roky; Hassan Rouba; Mostafa Kandil; Guy Lenaers; Abdelhamid Barakat

Mutations in the CLDN14 gene, encoding the tight junction claudin 14 protein has been reported to date in an autosomal recessive form of isolated hearing loss DFNB29. In order to identify the contribution of CLDN14 to inherited deafness in Moroccan population, we performed a genetic analysis of this gene in 80 Moroccan familial cases. Our results show the presence of 7 mutations: 6 being conservative and one leading to a missense mutation (C11T) which was found at heterozygous and homozygous states, with a general frequency of 6.87%. The pathogenicity of the resulting T4M substitution is under discussion. Finally, our study suggests that CLDN14 gene can be implicated in the development of hearing loss in the Moroccan population.


European Journal of Medical Genetics | 2016

Update of the spectrum of GJB2 gene mutations in 152 Moroccan families with autosomal recessive nonsyndromic hearing loss

Amina Bakhchane; Amale Bousfiha; Hicham Charoute; Sara Salime; Mustapha Detsouli; Khalid Snoussi; Sellama Nadifi; Mostafa Kabine; Hassan Rouba; Hind Dehbi; Rachida Roky; Majida Charif; Abdelhamid Barakat

Deafness is one of the most common genetic diseases in humans and is subject to important genetic heterogeneity. The most common cause of non syndromic hearing loss (NSHL) is mutations in the GJB2 gene. This study aims to update and evaluate the spectrum of GJB2 allele variants in 152 Moroccan multiplex families with non syndromic hearing loss. Seven different mutations were detected: c.35delG, p.V37I, p.E47X, p.G200R, p.Del120E, p.R75Q, the last three mutations were described for the first time in Moroccan deaf patients, in addition to a novel nonsense mutation, the c.385G>T which is not referenced in any database. Sixty six families (43.42%) have mutations in the coding region of GJB2, while the homozygous c.35delG mutation still to date the most represented 51/152 (33.55%). The analysis of the geographical distribution of mutations located in GJB2 gene showed more allelic heterogeneity in the north and center compared to the south of Morocco. Our results showed that the GJB2 gene is a major contributor to non syndromic hearing loss in Morocco. Thus, this report of the GJB2 mutations spectrum all over Morocco has an important implication for establishing a suitable molecular diagnosis.


Indian Journal of Human Genetics | 2013

Genetic and molecular analysis of the CLDN14 gene in Moroccan family with non-syndromic hearing loss

Majida Charif; Redouane Boulouiz; Amina Bakhechane; Houda Benrahma; Halima Nahili; Abdelmajid Eloualid; Hassan Rouba; Mostafa Kandil; Omar Abidi; Guy Lenaers; Abdelhamid Barakat

BACKGROUND: Hearing loss is the most prevalent human genetic sensorineural defect. Mutations in the CLDN14 gene, encoding the tight junction claudin 14 protein expressed in the inner ear, have been shown to cause non-syndromic recessive hearing loss DFNB29. AIM: We describe a Moroccan SF7 family with non-syndromic hearing loss. We performed linkage analysis in this family and sequencing to identify the mutation causing deafness. MATERIALS AND METHODS: Genetic linkage analysis, suggested the involvement of CLDN14 and KCNE1 gene in deafness in this family. Mutation screening was performed using direct sequencing of the CLDN14 and KCNE1 coding exon gene. RESULTS: Our results show the presence of c.11C>T mutation in the CLDN14 gene. Transmission analysis of this mutation in the family showed that the three affected individuals are homozygous, whereas parents and three healthy individuals are heterozygous. This mutation induces a substitution of threonine to methionine at position 4. CONCLUSION: These data show that CLDN14 gene can be i mplicated in the development of hearing loss in SF7 family; however, the pathogenicity of c.11C>T mutation remains to be determined.

Collaboration


Dive into the Majida Charif's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge