Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makhtar Niang is active.

Publication


Featured researches published by Makhtar Niang.


The Lancet | 2005

Resistance of Plasmodium falciparum field isolates to in-vitro artemether and point mutations of the SERCA-type PfATPase6

Ronan Jambou; Eric Legrand; Makhtar Niang; Nimol Khim; Pharath Lim; Béatrice Volney; Marie Therese Ekala; Christiane Bouchier; Philippe Esterre; Thierry Fandeur; Odile Mercereau-Puijalon

Artemisinin derivatives are an essential component of treatment against multidrug-resistant Plasmodium falciparum malaria. We aimed to investigate in-vitro resistance to artemisinin derivatives in field isolates. In-vitro susceptibility of 530 P falciparum isolates from three countries (Cambodia, French Guiana, and Senegal) with different artemisinin use was assessed with an isotopic microtest. Artemether IC50 up to 117 and 45 nmol/L was seen in French Guiana and Senegal, respectively. DNA sequencing in a subsample of 60 isolates lends support to SERCA-PfATPase6 as the target for artemisinins. The S769N PfATPase6 mutation, noted exclusively in French Guiana, was associated with raised (>30 nmol/L) artemether IC50s (p<0.0001, Mann-Whitney). All resistant isolates came from areas with uncontrolled use of artemisinin derivatives. This rise in resistance indicates the need for increased vigilance and a coordinated and rapid deployment of drug combinations.


PLOS Pathogens | 2009

The Plasmodium falciparum STEVOR multigene family mediates antigenic variation of the infected erythrocyte.

Makhtar Niang; Xue Yan Yam; Peter Rainer Preiser

Modifications of the Plasmodium falciparum–infected red blood cell (iRBC) surface have been linked to parasite-associated pathology. Such modifications enable the parasite to establish long-lasting chronic infection by evading antibody mediate immune recognition and splenic clearance. With the exception of the well-demonstrated roles of var-encoded PfEMP1 in virulence and immune evasion, the biological significance of other variant surface antigens (rif and stevor) is largely unknown. While PfEMP1 and RIFIN have been located on the iRBC surface, recent studies have located STEVOR at the iRBC membrane where it may be exposed on the erythrocyte surface. To investigate the role of STEVOR in more detail, we have developed antibodies against two putative STEVOR proteins and used a combination of indirect immunofluorescence assays (IFA), live IFA, flow cytometry, as well as agglutination assays, which enable us to demonstrate that STEVOR is clonally variant at the surface of schizont stage parasites. Crucially, expression of different STEVOR on the surface of the iRBC changes the antigenic property of the parasite. Taken together, our data for the first time demonstrate that STEVOR plays a role in creating antigenic diversity of schizont stage parasites, thereby adding additional complexity to the immunogenic properties of the iRBC. Furthermore, it clearly demonstrates that to obtain a complete understanding of how parasite-induced pathology is linked to variation on the surface of the iRBC, focusing the interactions of multiple multigene families needs to be considered.


Blood | 2012

A switch in infected erythrocyte deformability at the maturation and blood circulation of Plasmodium falciparum transmission stages

Marta Tibúrcio; Makhtar Niang; Guillaume Deplaine; Sylvie Perrot; Emmanuel Bischoff; Papa Alioune Ndour; Francesco Silvestrini; Ayman Khattab; Geneviève Milon; Peter H. David; Max Hardeman; Kenneth D. Vernick; Robert W. Sauerwein; Peter Rainer Preiser; Odile Mercereau-Puijalon; Pierre Buffet; Pietro Alano; Catherine Lavazec

Achievement of malaria elimination requires development of novel strategies interfering with parasite transmission, including targeting the parasite sexual stages (gametocytes). The formation of Plasmodium falciparum gametocytes in the human host takes several days during which immature gametocyte-infected erythrocytes (GIEs) sequester in host tissues. Only mature stage GIEs circulate in the peripheral blood, available to uptake by the Anopheles vector. Mechanisms underlying GIE sequestration and release in circulation are virtually unknown. We show here that mature GIEs are more deformable than immature stages using ektacytometry and microsphiltration methods, and that a switch in cellular deformability in the transition from immature to mature gametocytes is accompanied by the deassociation of parasite-derived STEVOR proteins from the infected erythrocyte membrane. We hypothesize that mechanical retention contributes to sequestration of immature GIEs and that regained deformability of mature gametocytes is associated with their release in the bloodstream and ability to circulate. These processes are proposed to play a key role in P falciparum gametocyte development in the host and to represent novel and unconventional targets for interfering with parasite transmission.


Cell Host & Microbe | 2014

STEVOR Is a Plasmodium falciparum Erythrocyte Binding Protein that Mediates Merozoite Invasion and Rosetting

Makhtar Niang; Amy K. Bei; Kripa Gopal Madnani; Shaaretha Pelly; Selasi Dankwa; Usheer Kanjee; Karthigayan Gunalan; Anburaj Amaladoss; Kim Pin Yeo; Ndeye Sakha Bob; Benoit Malleret; Manoj T. Duraisingh; Peter Rainer Preiser

Variant surface antigens play an important role in Plasmodium falciparum malaria pathogenesis and in immune evasion by the parasite. Although most work to date has focused on P. falciparum Erythrocyte Membrane Protein 1 (PfEMP1), two other multigene families encoding STEVOR and RIFIN are expressed in invasive merozoites and on the infected erythrocyte surface. However, their role during parasite infection remains to be clarified. Here we report that STEVOR functions as an erythrocyte-binding protein that recognizes Glycophorin C (GPC) on the red blood cell (RBC) surface and that its binding correlates with the level of GPC on the RBC surface. STEVOR expression on the RBC leads to PfEMP1-independent binding of infected RBCs to uninfected RBCs (rosette formation), while antibodies targeting STEVOR in the merozoite can effectively inhibit invasion. Our results suggest a PfEMP1-independent role for STEVOR in enabling infected erythrocytes at the schizont stage to form rosettes and in promoting merozoite invasion.


PLOS ONE | 2010

Geographic Structuring of the Plasmodium falciparum Sarco(endo)plasmic Reticulum Ca2+ ATPase (PfSERCA) Gene Diversity

Ronan Jambou; Axel Martinelli; João Pinto; Simonetta Gribaldo; Eric Legrand; Makhtar Niang; Nimol Kim; Lim Pharath; Béatrice Volnay; Marie Therese Ekala; Christiane Bouchier; Thierry Fandeur; Pedro Berzosa; Agustín Benito; Isabel Ferreira; C. Ferreira; Pedro Paulo Vieira; Maria das Graças Costa Alecrim; Odile Mercereau-Puijalon; Pedro Cravo

Artemisinin, a thapsigargin-like sesquiterpene has been shown to inhibit the Plasmodium falciparum sarco/endoplasmic reticulum calcium-ATPase PfSERCA. To collect baseline pfserca sequence information before field deployment of Artemisinin-based Combination therapies that may select mutant parasites, we conducted a sequence analysis of 100 isolates from multiple sites in Africa, Asia and South America. Coding sequence diversity was large, with 29 mutated codons, including 32 SNPs (average of one SNP/115 bp), of which 19 were novel mutations. Most SNP detected in this study were clustered within a region in the cytosolic head of the protein. The PfSERCA functional domains were very well conserved, with non synonymous mutations located outside the functional domains, except for the S769N mutation associated in French Guiana with elevated IC50 for artemether. The S769N mutation is located close to the hinge of the headpiece, which in other species modulates calcium affinity and in consequence efficacy of inhibitors, possibly linking calcium homeostasis to drug resistance. Genetic diversity was highest in Senegal, Brazil and French Guiana, and few mutations were identified in Asia. Population genetic analysis was conducted for a partial fragment of the gene encompassing nucleotide coordinates 87-2862 (unambiguous sequence available for 96 isolates). This supported a geographic clustering, with a separation between Old and New World samples and one dominant ancestral haplotype. Genetic drift alone cannot explain the observed polymorphism, suggesting that other evolutionary mechanisms are operating. One possible contributor could be the frequency of haemoglobinopathies that are associated with calcium dysregulation in the erythrocyte.


Future Microbiology | 2010

Small variant surface antigens and Plasmodium evasion of immunity

Noelle Yvonne Jemmely; Makhtar Niang; Peter Rainer Preiser

Antigenic variation at the Plasmodium-infected erythrocyte surface plays a critical role in malaria disease severity and host immune evasion. Our current understanding of the role of Plasmodium variant surface antigens in antigenic variation and immune evasion is largely limited to the extensive work carried out on the Plasmodium falciparum var gene family. Although homologues of var genes are not present in other malaria species, small variant gene families comprising the rif and stevor genes in P. falciparum and the pir genes in Plasmodium vivax, Plasmodium knowlesi and the rodent malaria Plasmodium chabaudi, Plasmodium berghei and Plasmodium yoelii also show features suggesting a role in antigenic variation and immune evasion. In this article, we highlight our current understanding of these variant antigens and provide insights on the mechanisms developed by malaria parasites to effectively avoid the host immune response and establish chronic infection.


Scientific Reports | 2013

Small molecule Plasmodium FKBP35 inhibitor as a potential antimalaria agent

Amaravadhi Harikishore; Makhtar Niang; Sreekanth Rajan; Peter Rainer Preiser; Ho Sup Yoon

Malaria parasite strains have emerged to tolerate the therapeutic effects of the prophylactics and drugs presently available. This resistance now poses a serious challenge to researchers in the bid to overcome malaria parasitic infection. Recent studies have shown that FK520 and its analogs inhibit malaria parasites growth by binding to FK506 binding proteins (FKBPs) of the parasites. Structure based drug screening efforts based on three-dimensional structural information of FKBPs from Plasmodium falciparum led us to identify new chemical entities that bind to the parasite FKBP35 and inhibit its growth. Our experimental results verify that this novel compound (D44) modulate the PPIase activity of Plasmodium FKBP35 and demonstrate the stage-specific growth inhibition of Plasmodium falciparum strains. Here, we present the X-ray crystallographic structures of FK506 binding domains (FKBDs) of PfFKBP35 and PvFKBP35 in complex with the newly identified inhibitor providing molecular insights into its mode of action.


Infection and Immunity | 2008

The C-Terminal Segment of the Cysteine-Rich Interdomain of Plasmodium falciparum Erythrocyte Membrane Protein 1 Determines CD36 Binding and Elicits Antibodies That Inhibit Adhesion of Parasite-Infected Erythrocytes

Min Mo; Hooi Chen Lee; Masayo Kotaka; Makhtar Niang; Xiaohong Gao; Jayasree Kaveri Iyer; Julien Lescar; Peter Rainer Preiser

ABSTRACT Attachment of erythrocytes infected by Plasmodium falciparum to receptors of the microvasculature is a major contributor to the pathology and morbidity associated with malaria. Adhesion is mediated by the P. falciparum erythrocyte membrane protein 1 (PfEMP-1), which is expressed at the surface of infected erythrocytes and is linked to both antigenic variation and cytoadherence. PfEMP-1 contains multiple adhesive modules, including the Duffy binding-like domain and the cysteine-rich interdomain region (CIDR). The interaction between CIDRα and CD36 promotes stable adherence of parasitized erythrocytes to endothelial cells. Here we show that a segment within the C-terminal region of CIDRα determines CD36 binding specificity. Antibodies raised against this segment can specifically block the adhesion to CD36 of erythrocytes infected with various parasite strains. Thus, small regions of PfEMP-1 that determine binding specificity could form suitable components of an antisequestration malaria vaccine effective against different parasite strains.


Malaria Journal | 2010

Chronic infection during placental malaria is associated with up-regulation of cycloxygenase-2

Demba Sarr; Delphine Aldebert; Laurence Marrama; Emilie Fréalle; A. Gaye; Hamoud O Brahim; Makhtar Niang; Jean Marie Dangou; Odile Mercereau-Puijalon; Jean Y. Lehesran; Ronan Jambou

BackgroundPlacental malaria (PM) is associated with poor foetal development, but the pathophysiological processes involved are poorly understood. Cyclooxygenase (COX) and lipoxygenase (LOX) which convert fatty acids to prostaglandins and leukotrienes, play important roles in pregnancy and foetal development. COX-2, currently targeted by specific drugs, plays a dual role as it associates with both pre-eclampsia pathology and recovery during infection. The role of COX during PM was questioned by quantifying at delivery COX-1, COX-2, 15-LOX, and IL-10 expression in two groups of malaria infected and uninfected placenta.MethodsPlacental biopsies were collected at delivery for mRNA isolation and quantification, using real time PCR.ResultsCOX-2 and IL-10 mRNAs increased mainly during chronic infections (nine- and five-times, respectively), whereas COX-1 transcripts remained constant. COX-2 over-expression was associated with a higher birth weight of the baby, but with a lower rate of haemoglobin of the mother. It was associated with a macrophage infiltration of the placenta and with a low haemozoin infiltration. In the opposite way, placental infection was associated with lower expression of 15-LOX mRNA. A high degree of haemozoin deposition correlates with low birth weight and decreased expression of COX-2.ConclusionThese data provide evidence that COX-2 and IL-10 are highly induced during chronic infection of the placenta, but were not associated with preterm delivery or low birth weight. The data support the involvement of COX-2 in the recovery phase of the placental infection.


Malaria Journal | 2009

Characterization of the repertoire diversity of the Plasmodium falciparum stevor multigene family in laboratory and field isolates.

Jane E. Blythe; Makhtar Niang; Kevin Marsh; Anthony A. Holder; Jean Langhorne; Peter Rainer Preiser

BackgroundThe evasion of host immune response by the human malaria parasite Plasmodium falciparum has been linked to expression of a range of variable antigens on the infected erythrocyte surface. Several genes are potentially involved in this process with the var, rif and stevor multigene families being the most likely candidates and coding for rapidly evolving proteins. The high sequence diversity of proteins encoded by these gene families may have evolved as an immune evasion strategy that enables the parasite to establish long lasting chronic infections. Previous findings have shown that the hypervariable region (HVR) of STEVOR has significant sequence diversity both within as well as across different P. falciparum lines. However, these studies did not address whether or not there are ancestral stevor that can be found in different parasites.MethodsDNA and RNA sequences analysis as well as phylogenetic approaches were used to analyse the stevor sequence repertoire and diversity in laboratory lines and Kilifi (Kenya) fresh isolates.ResultsConserved stevor genes were identified in different P. falciparum isolates from different global locations. Consistent with previous studies, the HVR of the stevor gene family was found to be highly divergent both within and between isolates. Importantly phylogenetic analysis shows some clustering of stevor sequences both within a single parasite clone as well as across different parasite isolates.ConclusionThis indicates that the ancestral P. falciparum parasite genome already contained multiple stevor genes that have subsequently diversified further within the different P. falciparum populations. It also confirms that STEVOR is under strong selection pressure.

Collaboration


Dive into the Makhtar Niang's collaboration.

Top Co-Authors

Avatar

Peter Rainer Preiser

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge