Makiko Kajimura
McMaster University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Makiko Kajimura.
The Journal of Experimental Biology | 2005
Chris M. Wood; Makiko Kajimura; Thomas P. Mommsen; Patrick J. Walsh
SUMMARY We investigated the consequences of feeding for acid–base balance, nitrogen excretion, blood metabolites and osmoregulation in the Pacific spiny dogfish. Sharks that had been starved for 7 days were surgically fitted with indwelling stomach tubes for gastric feeding and blood catheters for repetitive blood sampling and were confined in chambers, allowing measurement of ammonia-N and urea-N fluxes. The experimental meal infused via the stomach tube consisted of flatfish muscle (2% of body mass) suspended in saline (4% of body mass total volume). Control animals received only saline (4% of body mass). Feeding resulted in a marked rise in both arterial and venous pH and HCO3– concentrations at 3–9 h after the meal, with attenuation by 17 h. Venous ṖO2 also fell. As there were negligible changes in ṖCO2, the response was interpreted as an alkaline tide without respiratory compensation, associated with elevated gastric acid secretion. Urea-N excretion, which comprised >90% of the total, was unaffected, while ammonia-N excretion was very slightly elevated, amounting to <3% of the total-N in the meal over 45 h. Plasma ammonia-N rose slightly. Plasma urea-N, TMAO-N and glucose concentrations remained unchanged, while free amino acid and β-hydroxybutyrate levels exhibited modest declines. Plasma osmolality was persistently elevated after the meal relative to controls, partially explained by a significant rise in plasma Cl–. This marked post-prandial conservation of nitrogen is interpreted as reflecting the needs for urea synthesis for osmoregulation and protein growth in animals that are severely N-limited due to their sporadic and opportunistic feeding lifestyle in nature.
Biochimica et Biophysica Acta | 2008
Andrea J. Morash; Makiko Kajimura; Grant B. McClelland
Carnitine palmitoyltransferase (CPT) I is regulated by several genetic and non-genetic factors including allosteric inhibition, mitochondrial membrane composition and/or fluidity and transcriptional regulation of enzyme content. To determine the intrinsic differences in these regulating factors that may result in differences between tissues in fatty acid oxidation ability, mitochondria were isolated from red, white and heart muscles and liver tissue from rainbow trout. Maximal activity (V(max)) for beta-oxidation enzymes and citrate synthase per mg tissue protein as well as CPT I in isolated mitochondria followed a pattern across tissues of red muscle>heart>white muscle>liver suggesting both quantitative and qualitative differences in mitochondria. CPT I inhibition showed a similar pattern with the highest malonyl-CoA concentration to inhibit activity by 50% (IC(50)) found in red muscle while liver had the lowest. Tissue malonyl-CoA content was highest in white muscle with no differences between the other tissues. Interestingly, the gene expression profiles did not follow the same pattern as the tissue enzyme activity. CPT I mRNA expression was greatest in heart>red muscle>white muscle>liver. In contrast, PPARalpha mRNA was greatest in the liver>red muscle>heart>white muscle. There were no significant differences in the mRNA expression of PPARbeta between tissues. As well, no significant differences were found in the mitochondrial membrane composition between tissues, however, there was a tendency for red muscle to exhibit higher proportions of PUFAs as well as a decreased PC:PE ratio, both of which would indicate increased membrane fluidity. In fact, there were significant correlations between IC(50) of CPT I for malonyl-CoA and indicators of membrane fluidity across tissues. This supports the notion that sensitivity of CPT I to its allosteric regulator could be modulated by changes in mitochondrial membrane composition and/or fluidity.
The Journal of Experimental Biology | 2006
Katherine A. Sloman; Chris M. Wood; Graham R. Scott; Sylvia Wood; Makiko Kajimura; Ora E. Johannsson; Vera Maria Fonseca de Almeida-Val; Adalberto Luis Val
SUMMARY The physiological and behavioural responses of two size groups of oscar (Astronotus ocellatus) to hypoxia were studied. The physiological responses were tested by measuring ṀO2 during decreasing environmental oxygen tensions. Larger oscars were better able to maintain oxygen consumption during a decrease in PO2, regulating routine ṀO2 to a significantly lower PO2 threshold (50 mmHg) than smaller oscars (70 mmHg). Previous studies have also demonstrated a longer survival time of large oscars exposed to extreme hypoxia, coupled with a greater anaerobic enzymatic capability. Large oscars began aquatic surface respiration (ASR) at the oxygen tension at which the first significant decrease in ṀO2 was seen (50 mmHg). Interestingly, smaller oscars postponed ASR to around 22 mmHg, well beyond the PO2 at which they switched from oxyregulation to oxyconformation. Additionally, when given the choice between an hypoxic environment containing aquatic macrophyte shelter and an open normoxic environment, small fish showed a greater preference for the hypoxic environment. Thus shelter from predators appears particularly important for juveniles, who may accept a greater physiological compromise in exchange for safety. In response to hypoxia without available shelter, larger fish reduced their level of activity (with the exception of aggressive encounters) to aid metabolic suppression whereas smaller oscars increased their activity, with the potential benefit of finding oxygen-rich areas.
The Journal of Experimental Biology | 2007
Chris M. Wood; Makiko Kajimura; Carol Bucking; Patrick J. Walsh
SUMMARY In order to study the physiological consequences of voluntary feeding in the gastrointestinal tract of a ureotelic marine elasmobranch, dogfish (fasted for 96 h) were sampled at various times up to 360 h after consuming a 5–6% ration of teleost fish (hake) under natural feeding conditions. Digestion and absorption were completed between 120 and 360 h post-feeding. The tissue masses of different segments of the gastrointestinal tract increased and decreased markedly as the chyme moved through, mainly because of fluid engorgement rather than hyperplasia. In fasted dogfish, the cardiac and pyloric stomachs contained only small volumes of highly acidic fluid (pH 1.77±1.12, 2.05±0.08) similar in composition to seawater. Feeding resulted in gastric pHs of 3.20±0.31 and 3.95±0.40 at 6 h, followed by slow declines through 60 h. An alkaline tide in the blood also occurred at 6 h. In the face of large changing masses of highly acidic chyme in the stomachs, the pH (6.50±0.10), ionic composition and volume of chyme in the intestine (spiral valve) were precisely regulated from 6 to 60 h post-feeding at very different values from those in the stomachs, and intestinal HCO –3 remained low (5.12±0.83 mmol l–1). The colon was usually empty and its pH constant at 7.20±0.16 at all times. Despite the ingestion of strongly hypo-osmotic teleost tissue, the osmolality of the chyme remained in equilibrium with that of the blood plasma in all segments at all times after feeding. Much of the osmotic equilibration was because of the secretion of urea into the chyme, particularly in the intestine. After feeding, gastric fluid concentrations of Na+ and Mg2+ declined, K+ and Ca2+ increased, whereas Cl– exhibited little change, indicating that additional drinking of seawater was minimal. Na+, K+, water and especially Cl– were absorbed in the intestine, whereas Mg2+ and Ca2+ were largely excluded. Our results illustrate the complex integration of digestive and ionoregulatory function in the elasmobranch digestive tract, and marked differences from the teleost pattern.
Physiological and Biochemical Zoology | 2006
Makiko Kajimura; Patrick J. Walsh; Thomas P. Mommsen; Chris M. Wood
Urea not only is utilized as a major osmolyte in marine elasmobranchs but also constitutes their main nitrogenous waste. This study investigated the effect of feeding, and thus elevated nitrogen intake, on nitrogen metabolism in the Pacific spiny dogfish Squalus acanthias. We determined the activities of ornithine urea cycle (O‐UC) and related enzymes in liver and nonhepatic tissues. Carbamoyl phosphate synthetase III (the rate‐limiting enzyme of the O‐UC) activity in muscle is high compared with liver, and the activities in both tissues increased after feeding. The contribution of muscle to urea synthesis in the dogfish body appears to be much larger than that of liver when body mass is considered. Furthermore, enhanced activities of the O‐UC and related enzymes (glutamine synthetase, ornithine transcarbamoylase, arginase) were seen after feeding in both liver and muscle and were accompanied by delayed increases in plasma urea, trimethylamine oxide, total free amino acids, alanine, and chloride concentrations, as well as in total osmolality. The O‐UC and related enzymes also occurred in the intestine but showed little change after feeding. Feeding did not change the rate of urea excretion, indicating strong N retention after feeding. Ammonia excretion, which constituted only a small percentage of total N excretion, was raised in fed fish, while plasma ammonia did not change, suggesting that excess ammonia in plasma is quickly ushered into synthesis of urea or protein. In conclusion, we suggest that N conservation is a high priority in this elasmobranch and that feeding promotes ureogenesis and growth. Furthermore, exogenous nitrogen from food is converted into urea not only by the liver but also by the muscle and to a small extent by the intestine.
Physiological and Biochemical Zoology | 2007
Michael P. Wilkie; Tammie P. Morgan; Fernando Galvez; Richard W. Smith; Makiko Kajimura; Yuen K. Ip; Chris M. Wood
Although urea production and metabolism in lungfish have been thoroughly studied, we have little knowledge of how internal osmotic and electrolyte balance are controlled during estivation or in water. We tested the hypothesis that, compared with the body surface of teleosts, the slender African lungfish (Protopterus dolloi) body surface was relatively impermeable to water, Na+, and Cl− due to its greatly reduced gills. Accordingly, we measured the tritiated water (3H‐H2O) flux in P. dolloi in water and during air exposure. In water, 3H‐H2O efflux was comparable with the lowest measurements reported in freshwater teleosts, with a rate constant (K) of 17.6% body water h−1. Unidirectional ion fluxes, measured using 22Na+ and 36Cl−, indicated that Na+ and Cl− influx was more than 90% lower than values reported in most freshwater teleosts. During air exposure, a cocoon formed within 1 wk that completely covered the dorsolateral body surface. However, there were no disturbances to blood osmotic or ion (Na+, Cl−) balance, despite seven‐ to eightfold increases in plasma urea after 20 wk. Up to 13‐fold increases in muscle urea (on a dry‐weight basis) were the likely explanation for the 56% increase in muscle water content observed after 20 wk of air exposure. The possibility that muscle acted as a “water reservoir” during air exposure was supported by the 20% decline in body mass observed during subsequent reimmersion in water. This decline in body mass was equivalent to 28 mL water in a 100‐g animal and was very close to the calculated net water gain (approximately 32 mL) observed during the 20‐wk period of air exposure. Tritiated water and unidirectional ion fluxes on air‐exposed lungfish revealed that the majority of water and ion exchange was via the ventral body surface at rates that were initially similar to aquatic rates. The 3H‐H2O flux declined over time but increased upon reimmersion. We conclude that the slender lungfish body surface, including the gills, has relatively low permeability to water and ions but that the ventral surface is an important site of osmoregulation and ionoregulation. We further propose that an amphibian‐like combination of ventral skin water and ion permeability, plus internal urea accumulation during air exposure, allows P. dolloi to extract water from its surroundings and to store water in the muscle when the water supply becomes limited.
Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009
Chris M. Wood; Patrick J. Walsh; Makiko Kajimura; Grant B. McClelland; Shit F. Chew
Dogfish sharks are opportunistic predators, eating large meals at irregular intervals. Here we present a synthesis of data from several previous studies on responses in plasma metabolites after natural feeding and during prolonged fasting (up to 56days), together with new data on changes in plasma concentrations of amino acids and non-esterified fatty acids. Post-prandial and long-term fasting responses were compared to control sharks fasted for 7days, a typical inter-meal interval. A feeding frenzy was created in which dogfish were allowed to feed naturally on dead teleosts at two consumed ration levels, 2.6% and 5.5% of body weight. Most responses were more pronounced at the higher ration level. These included increases in urea and TMAO concentrations at 20h, followed by stability through to 56days of fasting. Ammonia levels were low and exhibited little short-term response to feeding, but declined to very low values during the extended fast. Glucose and beta-hydroxybutyrate both fell after feeding, the latter to a greater and more prolonged extent (up to 60h), whereas acetoacetate did not change. During prolonged fasting, glucose concentrations were well regulated, but beta-hydroxybutyrate increased to 2-3-fold control levels. Total plasma amino acid concentrations increased in a biphasic fashion, with peaks at 6-20h, and 48-60h after the meal, followed by homeostasis during the extended fast. Essential and non-essential amino acids generally followed this same pattern, though some exhibited different trends after feeding: taurine, beta-alanine, and glycine (decreases or stability), alanine and glutamine (modest prolonged increases), and threonine, serine, asparagine, and valine (much larger short-term increases). Plasma non-esterified fatty acid concentrations declined markedly through 48h after the 2.6% meal. These data are interpreted in light of companion studies showing elevations in aerobic metabolic rate, urea production, rectal gland function, metabolic base excretion, and activation of ornithine-urea cycle and aerobic enzymes after the meal, and muscle N-depletion but maintenance of osmolality and urea production during long-term fasting.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2008
W. Wesley Dowd; Chris M. Wood; Makiko Kajimura; Patrick J. Walsh; Dietmar Kültz
The rectal gland is the principal salt-secreting organ in elasmobranchs, yet its functional response to normal physiological variation (e.g., due to feeding, stress) has only recently been examined. To complement studies on acid-base, digestive, and osmoregulatory physiology in response to natural feeding, we investigated protein-level responses in the rectal gland of spiny dogfish (Squalus acanthias) 6 h, 20 h, and 5 days (reference control) after a meal. Our objective was to identify proteins involved in regulation of osmoregulatory and metabolic processes in response to feeding. Proteins were separated by two-dimensional gel electrophoresis, and protein spots that were significantly up- or down-regulated >2 fold (i.e., abundance increased more than 100% or decreased more than 50%) were detected using gel image analysis software. Of 684 proteins analyzed on 2D gels, 16 proteins changed significantly 6 h after feeding vs. 5 day controls (5 decreased; 11 increased), and 12 proteins changed >2 fold 20 h after feeding vs. 5 day controls (2 decreased; 10 increased). Thirteen of these proteins were identified using mass spectrometry and classified into functional pathways using the PANTHER bioinformatics database. Rectal gland proteins that were regulated following feeding fell into three main categories: cytoskeletal/muscular (e.g., tropomyosin alpha chain, transgelin), energy metabolism (e.g., malate dehydrogenase, ATP synthase), and nucleotide metabolism (nucleoside diphosphate kinase). The data also revealed that previously documented increases in the activity of isocitrate dehydrogenase after feeding are at least partially due to increased abundance of a cytosolic, NADP-dependent isoform of this enzyme. One of the primary components of the rectal glands response to feeding appears to be maintenance of the cellular supply of energy, which would be necessary to fuel increased activities of enzymes involved in salt secretion and oxidative metabolism in the rectal gland following a meal.
Physiological and Biochemical Zoology | 2008
Chris M. Wood; Makiko Kajimura; Thomas P. Mommsen; Patrick J. Walsh
Experimental metabolic alkalosis is known to stimulate whole‐animal urea production and active ion secretion by the rectal gland in the dogfish shark. Furthermore, recent evidence indicates that a marked alkaline tide (systemic metabolic alkalosis) follows feeding in this species and that the activities of the enzymes of the ornithine‐urea cycle (OUC) for urea synthesis in skeletal muscle and liver and of energy metabolism and ion transport in the rectal gland are increased at this time. We therefore evaluated whether alkalosis and/or NaCl/volume loading (which also occurs with feeding) could serve as a signal for activation of these enzymes independent of nutrient loading. Fasted dogfish were infused for 20 h with either 500 mmol L−1 NaHCO3 (alkalosis + volume expansion) or 500 mmol L−1 NaCl (volume expansion alone), both isosmotic to dogfish plasma, at a rate of 3 mL kg−1 h−1. NaHCO3 infusion progressively raised arterial pH to 8.28 (control = 7.85) and plasma [ \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape
The Journal of Experimental Biology | 2004
Makiko Kajimura; Sara J. Croke; Chris N. Glover; Chris M. Wood