Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makiko Nagai is active.

Publication


Featured researches published by Makiko Nagai.


Nature Neuroscience | 2007

Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons

Makiko Nagai; Diane B. Re; Tetsuya Nagata; Alcmène Chalazonitis; Thomas M. Jessell; Hynek Wichterle; Serge Przedborski

Mutations in superoxide dismutase-1 (SOD1) cause a form of the fatal paralytic disorder amyotrophic lateral sclerosis (ALS), presumably by a combination of cell-autonomous and non–cell-autonomous processes. Here, we show that expression of mutated human SOD1 in primary mouse spinal motor neurons does not provoke motor neuron degeneration. Conversely, rodent astrocytes expressing mutated SOD1 kill spinal primary and embryonic mouse stem cell–derived motor neurons. This is triggered by soluble toxic factor(s) through a Bax-dependent mechanism. However, mutant astrocytes do not cause the death of spinal GABAergic or dorsal root ganglion neurons or of embryonic stem cell–derived interneurons. In contrast to astrocytes, fibroblasts, microglia, cortical neurons and myocytes expressing mutated SOD1 do not cause overt neurotoxicity. These findings indicate that astrocytes may play a role in the specific degeneration of spinal motor neurons in ALS. Identification of the astrocyte-derived soluble factor(s) may have far-reaching implications for ALS from both a pathogenic and therapeutic standpoint.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice

Du-Chu Wu; Diane B. Re; Makiko Nagai; Harry Ischiropoulos; Serge Przedborski

ALS is a fatal paralytic disorder characterized by a progressive loss of spinal cord motor neurons. Herein, we show that NADPH oxidase, the main reactive oxygen species-producing enzyme during inflammation, is activated in spinal cords of ALS patients and in spinal cords in a genetic animal model of this disease. We demonstrate that inactivation of NADPH oxidase in ALS mice delays neurodegeneration and extends survival. We also show that NADPH oxidase-derived oxidant products damage proteins such as insulin-like growth factor 1 (IGF1) receptors, which are located on motor neurons. Our in vivo and in vitro data indicate that such an oxidative modification hinders the IGF1/Akt survival pathway in motor neurons. These findings suggest a non-cell-autonomous mechanism through which inflammation could hasten motor neuron death and contribute to the selective motor neuronal degeneration in ALS.


Brain Research | 2007

Increased autophagy in transgenic mice with a G93A mutant SOD1 gene.

Nobutoshi Morimoto; Makiko Nagai; Yasuyuki Ohta; Kazunori Miyazaki; Tomoko Kurata; Mizuki Morimoto; Tetsuro Murakami; Yasushi Takehisa; Yoshio Ikeda; Tatsushi Kamiya; Koji Abe

Autophagy, like the ubiquitin-proteasome system, is considered to play an important role in preventing the accumulation of abnormal proteins. Rat microtubule-associated protein 1 light chain 3 (LC3) is important for autophagy, and the conversion from LC3-I into LC3-II is accepted as a simple method for monitoring autophagy. We examined a SOD1G93A transgenic mouse model for amyotrophic lateral sclerosis (ALS) to consider a possible relationship between autophagy and ALS. In our study we analyzed LC3 and mammalian target of rapamycin (mTOR), a suppressor of autophagy, by immunoassays. The level of LC3-II, which is known to be correlated with the extent of autophagosome formation, was increased in SOD1G93A transgenic mice at symptomatic stage compared with non-transgenic or human wild-type SOD1 transgenic animals. Moreover, the ratio of phosphorylated mTOR/Ser2448 immunopositive motor neurons to total motor neurons was decreased in SOD1G93A-Tg mice. The present data show the possibility of increased autophagy in an animal model for ALS. And autophagy may be partially regulated by an mTOR signaling pathway in these animals.


Biochemical and Biophysical Research Communications | 2003

Mutant SOD1 linked to familial amyotrophic lateral sclerosis, but not wild-type SOD1, induces ER stress in COS7 cells and transgenic mice

Shinsuke Tobisawa; Yasukazu Hozumi; Shigeki Arawaka; Shingo Koyama; Manabu Wada; Makiko Nagai; Masashi Aoki; Yasuto Itoyama; Kaoru Goto; Takeo Kato

Mutations in a Cu, Zn-superoxide dismutase (SOD1) cause motor neuron death in human familial amyotrophic lateral sclerosis (FALS) and its mouse model, suggesting that mutant SOD1 has a toxic effect on motor neurons. However, the question of how the toxic function is gained has not been answered. Here, we report that the mutant SOD1s linked to FALS, but not wild-type SOD1, aggregated in association with the endoplasmic reticulum (ER) and induced ER stress in the cDNA-transfected COS7 cells. These cells showed an aberrant intracellular localization of mitochondria and microtubules, which might lead to a functional disturbance of the cells. Motor neurons of the spinal cord in transgenic mice with a FALS-linked mutant SOD1 also showed a marked increase of GRP78/BiP, an ER-resident chaperone, just before the onset of motor symptoms. These data suggest that ER stress is involved in the pathogenesis of FALS with an SOD1 mutation.


Brain Research | 2007

Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats

Yoshihide Sehara; Takeshi Hayashi; Kentaro Deguchi; Hanzhe Zhang; Atsushi Tsuchiya; Toru Yamashita; Violeta Lukic; Makiko Nagai; Tatsushi Kamiya; Koji Abe

Recently, granulocyte colony-stimulating factor (G-CSF) is expected to demonstrate beneficial effects on cerebral ischemia. Here, we showed the potential benefit of G-CSF administration after transient middle cerebral artery occlusion (tMCAO). Adult male Wistar rats received vehicle or G-CSF (50 microg/kg) subcutaneously after reperfusion, and were treated with 5-bromodeoxyuridine (BrdU, 50 mg/kg) once daily by the intraperitoneal route for 3 days after tMCAO. Nissl-stained sections at 7 days after tMCAO showed significant reduction of the infarction area (31%, P<0.01). At 7 days after tMCAO, BrdU plus NeuN double-positive cells increased by 43.3% in the G-CSF-treated group (P<0.05), and BrdU-positive endothelial cells were increased 2.29 times in the G-CSF-treated group, to a level as high as that in the vehicle-treated group (P<0.01), in the periischemic area. Our results indicate that G-CSF caused potentiation of neuroprotection and neurogenesis and is expected to have practical therapeutic potential in treating individuals after ischemic brain injury.


Journal of Neuropathology and Experimental Neurology | 2007

Intrathecal Delivery of Hepatocyte Growth Factor From Amyotrophic Lateral Sclerosis Onset Suppresses Disease Progression in Rat Amyotrophic Lateral Sclerosis Model

Aya Ishigaki; Masashi Aoki; Makiko Nagai; Hitoshi Warita; Shinsuke Kato; Masako Kato; Toshikazu Nakamura; Hiroshi Funakoshi; Yasuto Itoyama

Hepatocyte growth factor (HGF) is one of the most potent survival-promoting factors for motor neurons. We showed that introduction of the HGF gene into neurons of G93A transgenic mice attenuates motor neuron degeneration and increases the lifespan of these mice. Currently, treatment regimens using recombinant protein are closer to clinical application than gene therapy. To examine its protective effect on motor neurons and therapeutic potential we administered human recombinant HGF (hrHGF) by continuous intrathecal delivery to G93A transgenic rats at doses of 40 or 200 μg and 200 μg at 100 days of age (the age at which pathologic changes of the spinal cord appear, but animals show no clinical weakness) and at 115 days (onset of paralysis), respectively, for 4 weeks each. Intrathecal administration of hrHGF attenuates motor neuron degeneration and prolonged the duration of the disease by 63%, even with administration from the onset of paralysis. Our results indicated the therapeutic efficacy of continuous intrathecal administration of hrHGF in transgenic rats and should lead to the consideration for further clinical trials in amyotrophic lateral sclerosis using continuous intrathecal administration of hrHGF.


Journal of Neuroscience Research | 2007

Decreased Focal Inflammatory Response by G-CSF May Improve Stroke Outcome After Transient Middle Cerebral Artery Occlusion in Rats

Yoshihide Sehara; Takeshi Hayashi; Kentaro Deguchi; Hanzhe Zhang; Atsushi Tsuchiya; Toru Yamashita; Violeta Lukic; Makiko Nagai; Tatsushi Kamiya; Koji Abe

Recent studies have shown that administration of granulocyte colony‐stimulating factor (G‐CSF) is neuroprotective. However, the precise mechanisms of the neuroprotective effect of G‐CSF are not entirely known. We carried out 90‐min transient middle cerebral occlusion (tMCAO) of rats. The rats were injected with vehicle or G‐CSF (50 μg/kg) immediately after reperfusion and sacrificed 8, 24, or 72 hr later. 2,3,5‐Triphenyltetrazolium chloride (TTC) staining was carried out using brain sections of 72 hr, and immunohistochemistry was carried out with those of 8, 24, and 72 hr. TTC‐staining showed a significant reduction of infarct volume in the G‐CSF‐treated group (**P < 0.01). Immunohistochemistry showed a significant decrease of the number of cells expressing tumor necrosis factor‐α (TNF‐α) at 8–72 hr, transforming growth factor‐β (TGF‐β) and inducible nitric oxide synthase (iNOS) at 24 and 72 hr after tMCAO in the peri‐ischemic area (*P < 0.05 each). Our data suggest that the suppression of inflammatory cytokines and iNOS expression may be one mechanism of neuroprotection by G‐CSF.


Brain Research | 2007

Expression of netrin-1 and its receptors DCC and neogenin in rat brain after ischemia

Atsushi Tsuchiya; Takeshi Hayashi; Kentaro Deguchi; Yoshihide Sehara; Toru Yamashita; Hanzhe Zhang; Violeta Lukic; Makiko Nagai; Tatsushi Kamiya; Koji Abe

It is very important to investigate the mechanism of axonal growth in the ischemic brain in order to consider a novel mean of therapy for stroke. Netrins are chemotropic factors for axon with chemoattractant or chemorepellant guidance activities, and deleted in colorectal cancer (DCC) and neogenin are receptors for netrins. In this study, we examined expressions of netrin-1, DCC, and neogenin in the brain after 90 min of transient middle cerebral artery occlusion (tMCAO). Netrin-1 was expressed in neurons at the peri-ischemic area with a peak at 14 days. DCC was expressed both in neurons and astrocytic feet with a peak at 14 days, though neogenin was expressed in endothelial cells at MCA territory with a peak at the same time point. These results suggest that netrin-1 is involved in the promotion of axonal growth. The expression of netrin-1 and DCC was overlapped both in the spatial and temporal patterns, indicating that DCC plays a role in netrin-1s axonal growth promoting effects. The location of neogenin positive cells differed from that of netrin-1 positive cells, thus its angiogenic activity may not have relevance with netrin-1.


Journal of Neuroscience Research | 2008

Therapeutic benefits of intrathecal protein therapy in a mouse model of amyotrophic lateral sclerosis

Yasuyuki Ohta; Tatsushi Kamiya; Makiko Nagai; Tetsuya Nagata; Nobutoshi Morimoto; Kazunori Miyazaki; Tetsuro Murakami; Tomoko Kurata; Yasushi Takehisa; Yoshio Ikeda; Sadamitsu Asoh; Shigeo Ohta; Koji Abe

When fused with the protein transduction domain (PTD) derived from the human immunodeficiency virus TAT protein, proteins can cross the blood–brain barrier and cell membrane and transfer into several tissues, including the brain, making protein therapy feasible for various neurological disorders. We have constructed a powerful antiapoptotic modified Bcl‐XL protein (originally constructed from Bcl‐XL) fused with PTD derived from TAT (TAT‐modified Bcl‐XL), and, to examine its clinical effectiveness in a mouse model of familial amyotrophic lateral sclerosis (ALS), transgenic mice expressing human Cu/Zn superoxide dismutase (SOD1) bearing a G93A mutation were treated by intrathecal infusion of TAT‐modified Bcl‐XL. We demonstrate that intrathecally infused TAT‐fused protein was effectively transferred into spinal cord neurons, including motor neurons, and that intrathecal infusion of TAT‐modified Bcl‐XL delayed disease onset, prolonged survival, and improved motor performance. Histological studies show an attenuation of motor neuron loss and a decrease in the number of cleaved caspase 9‐, cleaved caspase 3‐, and terminal deoxynucleotidyl transferase‐mediated dUTP nick‐end labeling (TUNEL)‐positive cells in the lumbar cords of TAT‐modified Bcl‐XL‐treated G93A mice. Our results indicate that intrathecal protein therapy using a TAT‐fused protein is an effective clinical tool for the treatment of ALS.


Brain Research | 2007

Vascular endothelial growth factor promotes brain tissue regeneration with a novel biomaterial polydimethylsiloxane-tetraethoxysilane.

Hanzhe Zhang; Takeshi Hayashi; Kanji Tsuru; Kentaro Deguchi; Mitsuyuki Nagahara; Satoshi Hayakawa; Makiko Nagai; Tatsushi Kamiya; Akiyoshi Osaka; Koji Abe

In the brain after infarction or trauma, the tissue eventually becomes pannecrotic and forms a cavity. In such situations, a scaffold is necessary for the implanted or migrated cells to produce new tissue. In this present study, therefore, we attempted to restore brain tissue using a novel biomaterial, polydimethylsiloxane-tetraethoxysilane (PDMS-TEOS) hybrid with or without vascular endothelial growth factor (VEGF), which is crucial for new vessel formation. When PDMS-TEOS scaffold was implanted into the artificial brain defect, it remained at the implanted site and kept the integrity of the brain shape. At 30 days after the implantation, the marginal territory of PDMS-TEOS scaffold became occupied by newly formed tissue. Immunohistochemical analysis revealed that the new tissue was constituted by astrocytes and endothelial cells. Addition of VEGF increased the newly produced tissue volume, and the immunohistochemical analysis showed that the numbers of astrocytes and endothelial cells were increased. Double staining with proliferation maker Ki67 demonstrated that VEGF significantly increased newly formed astrocytes and endothelial cells, indicating that addition of VEGF accelerated tissue restoration and angiogenesis. These findings show that implantation of PDMS-TEOS scaffold with VEGF might be effective for treating old brain infarction or trauma.

Collaboration


Dive into the Makiko Nagai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge