Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsushi Kamiya is active.

Publication


Featured researches published by Tatsushi Kamiya.


Brain Research | 2007

Increased autophagy in transgenic mice with a G93A mutant SOD1 gene.

Nobutoshi Morimoto; Makiko Nagai; Yasuyuki Ohta; Kazunori Miyazaki; Tomoko Kurata; Mizuki Morimoto; Tetsuro Murakami; Yasushi Takehisa; Yoshio Ikeda; Tatsushi Kamiya; Koji Abe

Autophagy, like the ubiquitin-proteasome system, is considered to play an important role in preventing the accumulation of abnormal proteins. Rat microtubule-associated protein 1 light chain 3 (LC3) is important for autophagy, and the conversion from LC3-I into LC3-II is accepted as a simple method for monitoring autophagy. We examined a SOD1G93A transgenic mouse model for amyotrophic lateral sclerosis (ALS) to consider a possible relationship between autophagy and ALS. In our study we analyzed LC3 and mammalian target of rapamycin (mTOR), a suppressor of autophagy, by immunoassays. The level of LC3-II, which is known to be correlated with the extent of autophagosome formation, was increased in SOD1G93A transgenic mice at symptomatic stage compared with non-transgenic or human wild-type SOD1 transgenic animals. Moreover, the ratio of phosphorylated mTOR/Ser2448 immunopositive motor neurons to total motor neurons was decreased in SOD1G93A-Tg mice. The present data show the possibility of increased autophagy in an animal model for ALS. And autophagy may be partially regulated by an mTOR signaling pathway in these animals.


Stroke | 1993

The role of bradykinin in mediating ischemic brain edema in rats.

Tatsushi Kamiya; Yasuo Katayama; Fumihiko Kashiwagi; Akiro Terashi

Background and Purpose: We investigated the hypothesis that bradykinin generation may induce ischemic brain edema in spontaneously hypertensive rats. Methods: Cerebral ischemia lasting 3 hours was produced by bilateral common carotid artery occlusion in 67 rats. After the ischemic period, the rats were reperfused. Cerebral water content and energy metabolites (adenosine triphosphate, lactate, and pyruvate), as well as plasma and tissue bradykinin, were measured. Additionally, using the same experimental paradigm, bradykinin synthesis inhibitors (aprotinin [n =7] and soybean trypsin inhibitor [n =7]) were administered immediately after ischemia induction to determine the relation of bradykinin generation to the progression of ischemic brain edema. Results: Cerebral water content increased during the 3‐hour ischemic period, peaked at 30 minutes of reperfusion, and declined thereafter. Bradykinin levels in plasma and tissue rose markedly 30 minutes after reperfusion and fell thereafter. The progressive loss of adenosine triphosphate was mirrored by the rise in lactate. In the treated groups, aprotinin and soybean trypsin inhibitor administration significantly attenuated cerebral edema (p < 0.01 and p <0.05, respectively). The treated groups also showed less lactate accumulation and more adenosine triphosphate preservation than did the controls. Conclusions: These results demonstrate that bradykinin levels in plasma and tissue corresponded to cerebral edema progression and that bradykinin suppression decreased edema formation. These novel findings indicate that bradykinin activation augments the progression of ischemic brain edema. (Stroke 1993;24:571‐576)


Journal of Cerebral Blood Flow and Metabolism | 2009

Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain

Toru Yamashita; Tatsushi Kamiya; Kentaro Deguchi; Toshiki Inaba; Hanzhe Zhang; Jingwei Shang; Kazunori Miyazaki; Aiji Ohtsuka; Yasuo Katayama; Koji Abe

In the ischemic brain, reperfusion with tissue plasminogen activator (tPA) sometimes causes catastrophic hemorrhagic transformation (HT); however, the mechanism remains elusive. Here, we show that the basement membrane, and not the endothelial cells, is vulnerable to ischemic/reperfusion injury with tPA treatment. We treated a spontaneously hypertensive rat model of middle cerebral artery occlusion (MCAO) with vehicle alone, tPA alone, or a free radical scavenger, edaravone, plus tPA. Light and electron microscopic analyses of each microvascular component revealed that the basement membrane disintegrated and became detached from the astrocyte endfeet in tPA-treated animals that showed HT. On the other hand, edaravone prevented the dissociation of the neurovascular unit, dramatically decreased the HT, and improved the neurologic score and survival rate of the tPA-treated rats. These results suggest that the basement membrane that underlies the endothelial cells is a key structure for maintaining the integrity of the neurovascular unit, and a free-radical scavenger can be a viable agent for inhibiting tPA-induced HT.


Annals of Neurology | 2000

Linkage of autosomal recessive hereditary spastic paraplegia with mental impairment and thin corpus callosum to chromosome 15q13-15

Yoko Shibasaki; Hajime Tanaka; Kiyoshi Iwabuchi; Sari Kawasaki; Hiroshi Kondo; Kazutoshi Uekawa; Masayuki Ueda; Tatsushi Kamiya; Yasuo Katayama; Akinori Nakamura; Hiroshi Takashima; Masanori Nakagawa; Masayuki Masuda; Hiroya Utsumi; Takuya Nakamuro; Kazuo Tada; Kazuhiro Kurohara; Ken Inoue; Fumihiko Koike; Tetsuo Sakai; Shoji Tsuji; Hisashi Kobayashi

To date, three loci for autosomal recessive hereditary spastic paraplegia (ARHSP) linked to chromosomes 8p12‐q13, 16qter, and 15q13–15 have been characterized. We have clinically characterized 13 Japanese ARHSP families and performed genetic linkage analyses. All 13 families were classified as having the “complicated” form, which manifests with mental impairment and thin corpus callosum. Linkage to the 8p12‐q13 and 16qter loci was excluded, although 10 of the 13 families showed marker data consistent with linkage to the 15q13–15 locus. The multipoint LOD score of the 10 families linked to chromosome 15 was above 9.00 in the 3‐centimorgan segment flanked by D15S994 and D15S659, with a maximum multipoint LOD score of 9.68 at a position 1.2 centimorgans telomeric from D15S994 to D15S659. We have shown that ARHSP with thin corpus callosum, a subtype of recessive spastic paraplegia, maps to chromosome 15q13–15. Ann Neurol 2000;48:108–112


Neurological Research | 2001

Neuroprotective effect of immunosuppressant FK506 in transient focal ischemia in rats: Therapeutic time window for FK506 in transient focal ischemia

Takako Arii; Tatsushi Kamiya; Kazumasa Arii; Masayuki Ueda; Chikako Nito; Ken-ichiro Katsura; Yasuo Katayama

Abstract Tacrolimus (FK506), an immunosuppressant currently used in clinic, is known to have neuroprotective properties. However, effects in focal ischemia are shown only in a endothelin induced middle cerebral artery (MCA) occlusion model or with filament technique at a relatively high dose. We have previously shown that FK506 had significant protective effects at a low dose of 0.3mg kg-1 when administered immediately after ischemia. In this study, we explored the therapeutic time window of FK506 at this low dose, in a transient focal ischemia model using filament technique. Male Sprague-Dawley rats were subjected to 2 h MCA occlusion and subsequent reperfusion. They received FK506 or vehicle (0.3 mg kg-1) i.v. at 30, 60 or 120 min after induction of ischemia, and were decapitated 24 h after ischemia. FK506 injected at 30 and 60 min significantly reduced cortical infarction volume (FK506 vs. vehicle; 30 min: 95 ± 33 mm3 vs. 170 ± 62 mm3, p < 0.05; 60 min: 93 ± 45 mm3, vs. 168 ± 35 mm3, p < 0.05, respectively). FK506 was ineffective when given at 120 min after ischemia. FK506 had no effect on edema formation, nor on the infarct volume in striatum. The therapeutic time window for this low dose of FK506 given i.v. is between 60 and 120 min in this model. [Neurol Res 2001; 23: 755-760]


Brain Research | 2007

Potentiation of neurogenesis and angiogenesis by G-CSF after focal cerebral ischemia in rats

Yoshihide Sehara; Takeshi Hayashi; Kentaro Deguchi; Hanzhe Zhang; Atsushi Tsuchiya; Toru Yamashita; Violeta Lukic; Makiko Nagai; Tatsushi Kamiya; Koji Abe

Recently, granulocyte colony-stimulating factor (G-CSF) is expected to demonstrate beneficial effects on cerebral ischemia. Here, we showed the potential benefit of G-CSF administration after transient middle cerebral artery occlusion (tMCAO). Adult male Wistar rats received vehicle or G-CSF (50 microg/kg) subcutaneously after reperfusion, and were treated with 5-bromodeoxyuridine (BrdU, 50 mg/kg) once daily by the intraperitoneal route for 3 days after tMCAO. Nissl-stained sections at 7 days after tMCAO showed significant reduction of the infarction area (31%, P<0.01). At 7 days after tMCAO, BrdU plus NeuN double-positive cells increased by 43.3% in the G-CSF-treated group (P<0.05), and BrdU-positive endothelial cells were increased 2.29 times in the G-CSF-treated group, to a level as high as that in the vehicle-treated group (P<0.01), in the periischemic area. Our results indicate that G-CSF caused potentiation of neuroprotection and neurogenesis and is expected to have practical therapeutic potential in treating individuals after ischemic brain injury.


Brain Research | 2004

Mild hypothermia enhances the neuroprotective effects of FK506 and expands its therapeutic window following transient focal ischemia in rats

Chikako Nito; Tatsushi Kamiya; Masayuki Ueda; Takako Arii; Yasuo Katayama

FK506 (tacrolimus), an immunosuppressant, reportedly reduces ischemic brain injury following transient middle cerebral artery occlusion (MCAO) in rats. The authors previously reported that the therapeutic window of FK506 in this model is more than 1 h, but less than 2 h. The aim of the present study is to determine whether mild hypothermia (35 degrees C) enhances the neuroprotective effects of FK506 and expands its therapeutic window. Sprague-Dawley rats were subjected to 2 h MCAO followed by 24 h reperfusion. Animals were randomly divided into four groups: (I) vehicle-treated normothermic group; (II) FK506-treated normothermic group; (III) vehicle-treated hypothermic group; (IV) FK506-treated hypothermic group. Animals received a single injection of FK506 (0.3 mg/kg) or vehicle intravenously at 2 h after ischemic induction. During ischemia, temporal muscle and rectal temperatures were maintained at 37 degrees C in the normothermic animals and at 35 degrees C in the hypothermic animals. Infarct volumes and neurological performance were evaluated at 24 h after reperfusion. The combination of FK506 and mild hypothermia significantly reduced infarct volume (cortex, -61%; striatum, -31%) and edema volume (cortex, -57%; striatum, -41%), while mild hypothermia or FK506 alone failed to improve ischemic brain damage. Furthermore, this combination also provided for the best functional outcome. These results demonstrate that the combination of FK506 and mild hypothermia significantly reduces ischemic brain damage following transient MCAO in rats, and expands the therapeutic window for FK506. This therapy may be a new approach for treatment of acute stroke.


Journal of Neuroscience Research | 2007

Decreased Focal Inflammatory Response by G-CSF May Improve Stroke Outcome After Transient Middle Cerebral Artery Occlusion in Rats

Yoshihide Sehara; Takeshi Hayashi; Kentaro Deguchi; Hanzhe Zhang; Atsushi Tsuchiya; Toru Yamashita; Violeta Lukic; Makiko Nagai; Tatsushi Kamiya; Koji Abe

Recent studies have shown that administration of granulocyte colony‐stimulating factor (G‐CSF) is neuroprotective. However, the precise mechanisms of the neuroprotective effect of G‐CSF are not entirely known. We carried out 90‐min transient middle cerebral occlusion (tMCAO) of rats. The rats were injected with vehicle or G‐CSF (50 μg/kg) immediately after reperfusion and sacrificed 8, 24, or 72 hr later. 2,3,5‐Triphenyltetrazolium chloride (TTC) staining was carried out using brain sections of 72 hr, and immunohistochemistry was carried out with those of 8, 24, and 72 hr. TTC‐staining showed a significant reduction of infarct volume in the G‐CSF‐treated group (**P < 0.01). Immunohistochemistry showed a significant decrease of the number of cells expressing tumor necrosis factor‐α (TNF‐α) at 8–72 hr, transforming growth factor‐β (TGF‐β) and inducible nitric oxide synthase (iNOS) at 24 and 72 hr after tMCAO in the peri‐ischemic area (*P < 0.05 each). Our data suggest that the suppression of inflammatory cytokines and iNOS expression may be one mechanism of neuroprotection by G‐CSF.


Brain Research | 2007

Expression of netrin-1 and its receptors DCC and neogenin in rat brain after ischemia

Atsushi Tsuchiya; Takeshi Hayashi; Kentaro Deguchi; Yoshihide Sehara; Toru Yamashita; Hanzhe Zhang; Violeta Lukic; Makiko Nagai; Tatsushi Kamiya; Koji Abe

It is very important to investigate the mechanism of axonal growth in the ischemic brain in order to consider a novel mean of therapy for stroke. Netrins are chemotropic factors for axon with chemoattractant or chemorepellant guidance activities, and deleted in colorectal cancer (DCC) and neogenin are receptors for netrins. In this study, we examined expressions of netrin-1, DCC, and neogenin in the brain after 90 min of transient middle cerebral artery occlusion (tMCAO). Netrin-1 was expressed in neurons at the peri-ischemic area with a peak at 14 days. DCC was expressed both in neurons and astrocytic feet with a peak at 14 days, though neogenin was expressed in endothelial cells at MCA territory with a peak at the same time point. These results suggest that netrin-1 is involved in the promotion of axonal growth. The expression of netrin-1 and DCC was overlapped both in the spatial and temporal patterns, indicating that DCC plays a role in netrin-1s axonal growth promoting effects. The location of neogenin positive cells differed from that of netrin-1 positive cells, thus its angiogenic activity may not have relevance with netrin-1.


Brain Research | 1998

The effect of duration of cerebral ischemia on brain pyruvate dehydrogenase activity, energy metabolites, and blood flow during reperfusion in gerbil brain.

Takaharu Fukuchi; Yasuo Katayama; Tatsushi Kamiya; Ann McKee; Fumihiko Kashiwagi; Akiro Terashi

The objective of this study was to determine whether the duration of an ischemic insult effects the activity of the mitochondrial enzyme pyruvate dehydrogenase (PDH) in relation to the recovery of metabolites and regional cerebral blood flow (rCBF) immediately after ischemia and during reperfusion in gerbil cortex. Cerebral ischemia was induced, using the bilateral carotid artery occlusion method, for 20 or 60 min, followed by reperfusion up to 120 min. Immediately after ischemia PDH activity increased threefold regardless of ischemic duration. In the 60-min ischemic group, PDH remained activated, the recovery of high energy phosphates and the clearance of lactate were poor, and the rCBF was 48% of controls after 20-min reperfusion, decreasing gradually to 26% at 120-min reperfusion. In the 20-min ischemic group, PDH activity normalized quickly, the restoration of energy phosphates was good, there was a quick reduction in lactate within the first 60 min of reperfusion, and the rCBF was 65% of control at 20-min reperfusion, and remained over 48% of control throughout reperfusion. Recovery of metabolism after reperfusion did not parallel the changes in rCBF in either group, most noticeably in the 60-min ischemic group. The slow normalization of PDH activity reflected the poor recovery of metabolites in the 60-min ischemic group, indicating that PDH activity is important in the resynthesis of energy metabolites during reperfusion. In conclusion, prolonging the ischemic insult effected PDH activity during reperfusion, impaired recovery of energy metabolites, and worsened the recovery of rCBF.

Collaboration


Dive into the Tatsushi Kamiya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge