Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tatsuo Michiue is active.

Publication


Featured researches published by Tatsuo Michiue.


Nature Cell Biology | 2006

The thioredoxin-related redox-regulating protein nucleoredoxin inhibits Wnt-β-catenin signalling through Dishevelled

Yosuke Funato; Tatsuo Michiue; Makoto Asashima; Hiroaki Miki

Dishevelled (Dvl) transduces signals from the Wnt receptor, Frizzled, to downstream components, leading to the stabilization of β-catenin and subsequent activation of the transcription factor T cell factor (TCF) and/or lymphoid enchancer factor (LEF). However, the mechanism of Dvl action remains unclear. Here, we report that nucleoredoxin (NRX), a thioredoxin (TRX) family protein, interacts with Dvl. Overexpression of NRX selectively suppresses the Wnt–β-catenin pathway and ablation of NRX by RNA-interference (RNAi) results in activation of TCF, accelerated cell proliferation and enhancement of oncogenicity through cooperation with mitogen-activated extracellular signal regulated kinase kinase (MEK) or Ras. We find that cells respond to H2O2 stimulation by activating TCF. Redox-dependent activation of the Wnt–β-catenin pathway occurs independently of extracellular Wnts and is impaired by RNAi of NRX . In addition, association between Dvl and NRX is inhibited by H2O2 treatment. These data suggest a relationship between the Wnt–β-catenin pathway and redox signalling through redox-sensitive association of NRX with Dvl.


Nature | 2016

Genome evolution in the allotetraploid frog Xenopus laevis

Adam Session; Yoshinobu Uno; Taejoon Kwon; Jarrod Chapman; Atsushi Toyoda; Shuji Takahashi; Akimasa Fukui; Akira Hikosaka; Atsushi Suzuki; Mariko Kondo; Simon J. van Heeringen; Ian Quigley; Sven Heinz; Hajime Ogino; Haruki Ochi; Uffe Hellsten; Jessica B. Lyons; Oleg Simakov; Nicholas H. Putnam; Jonathan Stites; Yoko Kuroki; Toshiaki Tanaka; Tatsuo Michiue; Minoru Watanabe; Ozren Bogdanović; Ryan Lister; Georgios Georgiou; Sarita S. Paranjpe; Ila van Kruijsbergen; Shengquiang Shu

To explore the origins and consequences of tetraploidy in the African clawed frog, we sequenced the Xenopus laevis genome and compared it to the related diploid X. tropicalis genome. We characterize the allotetraploid origin of X. laevis by partitioning its genome into two homoeologous subgenomes, marked by distinct families of ‘fossil’ transposable elements. On the basis of the activity of these elements and the age of hundreds of unitary pseudogenes, we estimate that the two diploid progenitor species diverged around 34 million years ago (Ma) and combined to form an allotetraploid around 17–18 Ma. More than 56% of all genes were retained in two homoeologous copies. Protein function, gene expression, and the amount of conserved flanking sequence all correlate with retention rates. The subgenomes have evolved asymmetrically, with one chromosome set more often preserving the ancestral state and the other experiencing more gene loss, deletion, rearrangement, and reduced gene expression.


Developmental Cell | 2008

Wnt3a and Dkk1 Regulate Distinct Internalization Pathways of LRP6 to Tune the Activation of β-Catenin Signaling

Hideki Yamamoto; Hiroshi Sakane; Tatsuo Michiue; Akira Kikuchi

Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin. In contrast, Dkk1, which inhibits Wnt3a-dependent stabilization of beta-catenin, induced the internalization of LRP6 with clathrin. Knockdown of clathrin suppressed the Dkk1-dependent inhibition of the Wnt3a response. Furthermore, Dkk1 reduced the distribution of LRP6 in the lipid raft fraction where caveolin is associated. These results indicate that Wnt3a and Dkk1 shunt LRP6 to distinct internalization pathways in order to activate and inhibit the beta-catenin signaling, respectively.


Molecular and Cellular Biology | 2001

Inhibition of the Wnt Signaling Pathway by Idax, a Novel Dvl-Binding Protein

Shin-ichiro Hino; Shosei Kishida; Tatsuo Michiue; Akimasa Fukui; Ikuo Sakamoto; Shinji Takada; Makoto Asashima; Akira Kikuchi

ABSTRACT In attempting to clarify the roles of Dvl in the Wnt signaling pathway, we identified a novel protein which binds to the PDZ domain of Dvl and named it Idax (for inhibition of the Dvl and Axin complex). Idax and Axin competed with each other for the binding to Dvl. Immunocytochemical analyses showed that Idax was localized to the same place as Dvl in cells and that expression of Axin inhibited the colocalization of Dvl and Idax. Further, Wnt-induced accumulation of β-catenin and activation of T-cell factor in mammalian cells were suppressed by expression of Idax. Expression of Idax inXenopus embryos induced ventralization with a reduction in the expression of siamois, a Wnt-inducible gene. Idax inhibited Wnt- and Dvl- but not β-catenin-induced axis duplication. It is known that Dvl is a positive regulator in the Wnt signaling pathway and that the PDZ domain is important for this activity. Therefore, these results suggest that Idax functions as a negative regulator of the Wnt signaling pathway by directly binding to the PDZ domain of Dvl.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular links among the causative genes for ocular malformation: Otx2 and Sox2 coregulate Rax expression

Hiroki Danno; Tatsuo Michiue; Keisuke Hitachi; Akira Yukita; Shoichi Ishiura; Makoto Asashima

The neural-related genes Sox2, Pax6, Otx2, and Rax have been associated with severe ocular malformations such as anophthalmia and microphthalmia, but it remains unclear as to how these genes are linked functionally. We analyzed the upstream signaling of Xenopus Rax (also known as Rx1) and identified the Otx2 and Sox2 proteins as direct upstream regulators of Rax. We revealed that endogenous Otx2 and Sox2 proteins bound to the conserved noncoding sequence (CNS1) located ≈2 kb upstream of the Rax promoter. This sequence is conserved among vertebrates and is required for potent transcriptional activity. Reporter assays showed that Otx2 and Sox2 synergistically activated transcription via CNS1. Furthermore, the Otx2 and Sox2 proteins physically interacted with each other, and this interaction was affected by the Sox2-missense mutations identified in these ocular disorders. These results demonstrate that the direct interaction and interdependence between the Otx2 and Sox2 proteins coordinate Rax expression in eye development, providing molecular linkages among the genes responsible for ocular malformation.


Journal of Biological Chemistry | 2000

A Novel β-Catenin-binding Protein Inhibits β-Catenin-dependent Tcf Activation and Axis Formation

Ikuo Sakamoto; Shosei Kishida; Akimasa Fukui; Michiko Kishida; Hideki Yamamoto; Shin-ichiro Hino; Tatsuo Michiue; Shinji Takada; Makoto Asashima; Akira Kikuchi

β-Catenin is efficiently phosphorylated by glycogen synthase kinase-3β in the Axin complex in the cytoplasm, resulting in the down-regulation. In response to Wnt, β-catenin is stabilized and translocated into the nucleus where it stimulates gene expression through Tcf/Lef. Here we report a novel protein, designated Duplin (for axis duplication inhibitor), which negatively regulates the function of β-catenin in the nucleus. Duplin was located in the nucleus. Duplin bound directly to the Armadillo repeats of β-catenin, thereby inhibiting the binding of Tcf to β-catenin. It did not affect the stability of β-catenin but inhibited Wnt- or β-catenin-dependent Tcf activation. Furthermore, expression of Duplin in Xenopus embryos inhibited the axis formation and β-catenin-dependent axis duplication, and prevented the β-catenins ability to rescue ventralizing phenotypes induced by ultraviolet light irradiation. Thus, Duplin is a nuclear protein that inhibits β-catenin signaling.


Molecular and Cellular Biology | 2002

Desumoylation Activity of Axam, a Novel Axin-Binding Protein, Is Involved in Downregulation of β-Catenin

Takayuki Kadoya; Hideki Yamamoto; Toshiaki Suzuki; Akira Yukita; Akimasa Fukui; Tatsuo Michiue; Toshimasa Asahara; Keiji Tanaka; Makoto Asashima; Akira Kikuchi

ABSTRACT Axam has been identified as a novel Axin-binding protein that inhibits the Wnt signaling pathway. We studied the molecular mechanism by which Axam stimulates the downregulation of β-catenin. The C-terminal region of Axam has an amino acid sequence similar to that of the catalytic region of SENP1, a SUMO-specific protease (desumoylation enzyme). Indeed, Axam exhibited activity to remove SUMO from sumoylated proteins in vitro and in intact cells. The Axin-binding domain is located in the central region of Axam, which is different from the catalytic domain. Neither the Axin-binding domain nor the catalytic domain alone was sufficient for the downregulation of β-catenin. An Axam fragment which contains both domains was able to decrease the level of β-catenin. On substitution of Ser for Cys547 in the catalytic domain, Axam lost its desumoylation activity. Further, this Axam mutant decreased the activity to downregulate β-catenin. Although Axam strongly inhibited axis formation and expression of siamois, a Wnt-response gene, in Xenopus embryos, AxamC547S showed weak activities. These results demonstrate that Axam functions as a desumoylation enzyme to downregulate β-catenin and suggest that sumoylation is involved in the regulation of the Wnt signaling pathway.


Oncogene | 2009

Decreased expression of CXXC4 promotes a malignant phenotype in renal cell carcinoma by activating Wnt signaling

Takahiro Kojima; Toru Shimazui; Shiro Hinotsu; Akira Joraku; Takehiro Oikawa; Koji Kawai; Ryo Horie; Hiromi Suzuki; R Nagashima; Kazuhiro Yoshikawa; Tatsuo Michiue; Makoto Asashima; Hideyuki Akaza; Kazuhiko Uchida

The Wnt signaling pathway is involved in normal embryonic development and controls the homeostatic self-renewal of stem cells in adult tissues. Constitutive activation of Wnt signaling contributes to cancer development and progression. We identified a CXXC4 homozygous deletion at 4q24 in an aggressive renal cell carcinoma (RCC) using single-nucleotide polymorphism (SNP) arrays. CXXC4 encodes Idax, which negatively regulates Wnt signaling by binding to the PDZ domain of Dishevelled. CXXC4 mRNA levels in tumor samples were significantly lower in patients with metastases compared with those without (P=0.0016). Patients whose tumors had lower CXXC4 expression than normal kidney showed a poorer cause-specific survival outcome than those with higher expression (P=0.0095). Decreased expression of CXXC4 also correlated with cytoplasmic staining of β-catenin. Knockdown of CXXC4 induced the nuclear translocation of β-catenin and altered expression of a set of genes involved in cell proliferation, invasion and survival. Furthermore, reduced expression of CXXC4 by small interfering RNAs promoted cell proliferation and inhibited apoptosis after 5-FU and doxorubicin treatment in RCC cells. These data suggest that CXXC4 plays a critical role in tumor progression of RCC through Wnt signaling. Wnt signaling could thus be a potential molecular target in RCC indicating decreased CXXC4 expression.


Journal of Biological Chemistry | 2000

Inhibition of Wnt Signaling Pathway by a Novel Axin-binding Protein

Takayuki Kadoya; Shosei Kishida; Akimasa Fukui; Takao Hinoi; Tatsuo Michiue; Makoto Asashima; Akira Kikuchi

Axin forms a complex with adenomatous polyposis coli gene product, glycogen synthase kinase-3β (GSK-3β), β-catenin, Dvl, and protein phosphatase 2A and functions as a scaffold protein in the Wnt signaling pathway. In the Axin complex, GSK-3β efficiently phosphorylates β-catenin, which is then ubiquitinated and degraded by proteasome. We isolated a novel protein that binds to Axin and named it Axam (for Axinassociating molecule). Axam formed a complex with Axin in intact cells and bound directly to Axin. Axam inhibited the complex formation of Dvl with Axin and the activity of Dvl to suppress GSK-3β-dependent phosphorylation of Axin. Furthermore, Axam induced the degradation of β-catenin in SW480 cells and inhibited Wnt-dependent axis duplication inXenopus embryos. These results suggest that Axam regulates the Wnt signaling pathway negatively by inhibiting the binding of Dvl to Axin.


PLOS ONE | 2010

Reduction of N-glycolylneuraminic acid in human induced pluripotent stem cells generated or cultured under feeder- and serum-free defined conditions.

Yohei Hayashi; Techuan Chan; Masaki Warashina; Masakazu Fukuda; Takashi Ariizumi; Koji Okabayashi; Naoya Takayama; Makoto Otsu; Koji Eto; Miho K. Furue; Tatsuo Michiue; Kiyoshi Ohnuma; Hiromitsu Nakauchi; Makoto Asashima

Background The successful establishment of human induced pluripotent stem cells (hiPSCs) has increased the possible applications of stem cell research in biology and medicine. In particular, hiPSCs are a promising source of cells for regenerative medicine and pharmacology. However, one of the major obstacles to such uses for hiPSCs is the risk of contamination from undefined pathogens in conventional culture conditions that use serum replacement and mouse embryonic fibroblasts as feeder cells. Methodology/Principal Findings Here we report a simple method for generating or culturing hiPSCs under feeder- and serum-free defined culture conditions that we developed previously for human embryonic stem cells. The defined culture condition comprises a basal medium with a minimal number of defined components including five highly purified proteins and fibronectin as a substrate. First, hiPSCs, which were generated using Yamanakas four factors and conventional undefined culture conditions, adapted to the defined culture conditions. These adapted cells retained the property of self renewal as evaluated morphologically, the expression of self-renewal marker proteins, standard growth rates, and pluripotency as evaluated by differentiation into derivatives of all three primary germ layers in vitro and in vivo (teratoma formation in immunodeficient mice). Moreover, levels of nonhuman N-glycolylneuraminic acid (Neu5Gc), which is a xenoantigenic indicator of pathogen contamination in human iPS cell cultures, were markedly decreased in hiPSCs cultured under the defined conditions. Second, we successfully generated hiPSCs using adult dermal fibroblast under the defined culture conditions from the reprogramming step. For a long therm culture, the generated cells also had the property of self renewal and pluripotency, they carried a normal karyotype, and they were Neu5Gc negative. Conclusion/Significance This study suggested that generation or adaption culturing under defined culture conditions can eliminate the risk posed by undefined pathogens. This success in generating hiPSCs using adult fibroblast would be beneficial for clinical application.

Collaboration


Dive into the Tatsuo Michiue's collaboration.

Top Co-Authors

Avatar

Makoto Asashima

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Akira Yukita

Matsumoto Dental University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuzuru Ito

National Institute of Advanced Industrial Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kiyoshi Ohnuma

Nagaoka University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge