Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Makoto Odaka is active.

Publication


Featured researches published by Makoto Odaka.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2011

Accelerated epithelial cell senescence in IPF and the inhibitory role of SIRT6 in TGF-β-induced senescence of human bronchial epithelial cells

Shunsuke Minagawa; Jun Araya; Takanori Numata; Satoko Nojiri; Hiromichi Hara; Yoko Yumino; Makoto Kawaishi; Makoto Odaka; Toshiaki Morikawa; Stephen L. Nishimura; Katsutoshi Nakayama; Kazuyoshi Kuwano

Reepithelialization of remodeled air spaces with bronchial epithelial cells is a prominent pathological finding in idiopathic pulmonary fibrosis (IPF) and is implicated in IPF pathogenesis. Recent studies suggest that epithelial senescence is a risk factor for development of IPF, indicating such reepithelialization may be influenced by the acceleration of cellular senescence. Among the sirtuin (SIRT) family, SIRT6, a class III histone deacetylase, has been demonstrated to antagonize senescence. We evaluated the senescence of bronchiolization in association with SIRT6 expression in IPF lung. Senescence-associated β-galactosidase staining and immunohistochemical detection of p21 were performed to evaluate cellular senescence. As a model for transforming growth factor (TGF)-β-induced senescence of abnormal reepithelialization, we used primary human bronchial epithelial cells (HBEC). The changes of SIRT6, p21, and interleukin (IL)-1β expression levels in HBEC, as well as type I collagen expression levels in fibroblasts, were evaluated. In IPF lung samples, an increase in markers of senescence and SIRT6 expression was found in the bronchial epithelial cells lining cystically remodeled air spaces. We found that TGF-β induced senescence in primary HBEC by increasing p21 expression, and, whereas TGF-β also induced SIRT6, it was not sufficient to inhibit cellular senescence. However, overexpression of SIRT6 efficiently inhibited TGF-β-induced senescence via proteasomal degradation of p21. TGF-β-induced senescent HBEC secreted increased amounts of IL-1β, which was sufficient to induce myofibroblast differentiation in fibroblasts. These findings suggest that accelerated epithelial senescence plays a role in IPF pathogenesis through perpetuating abnormal epithelial-mesenchymal interactions, which can be antagonized by SIRT6.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Insufficient autophagy in idiopathic pulmonary fibrosis

Jun Araya; Jun Kojima; Naoki Takasaka; Saburo Ito; Satoko Fujii; Hiromichi Hara; Haruhiko Yanagisawa; Kenji Kobayashi; Chikako Tsurushige; Makoto Kawaishi; Noriki Kamiya; Jun Hirano; Makoto Odaka; Toshiaki Morikawa; Stephen L. Nishimura; Yoshinori Kawabata; Hiroshi Hano; Katsutoshi Nakayama; Kazuyoshi Kuwano

Autophagy, a process that helps maintain homeostatic balance between the synthesis, degradation, and recycling of organelles and proteins to meet metabolic demands, plays an important regulatory role in cellular senescence and differentiation. Here we examine the regulatory role of autophagy in idiopathic pulmonary fibrosis (IPF) pathogenesis. We test the hypothesis that epithelial cell senescence and myofibroblast differentiation are consequences of insufficient autophagy. Using biochemical evaluation of in vitro models, we find that autophagy inhibition is sufficient to induce acceleration of epithelial cell senescence and myofibroblast differentiation in lung fibroblasts. Immunohistochemical evaluation of human IPF biospecimens reveals that epithelial cells show increased cellular senescence, and both overlaying epithelial cells and fibroblasts in fibroblastic foci (FF) express both ubiquitinated proteins and p62. These findings suggest that insufficient autophagy is an underlying mechanism of both accelerated cellular senescence and myofibroblast differentiation in a cell-type-specific manner and is a promising clue for understanding the pathogenesis of IPF.


OncoImmunology | 2012

Insufficient autophagy promotes bronchial epithelial cell senescence in chronic obstructive pulmonary disease

Satoko Fujii; Hiromichi Hara; Jun Araya; Naoki Takasaka; Jun-ichi Kojima; Saburo Ito; Shunsuke Minagawa; Yoko Yumino; Takeo Ishikawa; Takanori Numata; Makoto Kawaishi; Jun Hirano; Makoto Odaka; Toshiaki Morikawa; Stephen L. Nishimura; Katsutoshi Nakayama; Kazuyoshi Kuwano

Tobacco smoke-induced accelerated cell senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Cell senescence is accompanied by the accumulation of damaged cellular components suggesting that in COPD, inhibition of autophagy may contribute to cell senescence. Here we look at whether autophagy contributes to cigarette smoke extract (CSE) - induced cell senescence of primary human bronchial epithelial cells (HBEC), and further evaluate p62 and ubiquitinated protein levels in lung homogenates from COPD patients. We demonstrate that CSE transiently induces activation of autophagy in HBEC, followed by accelerated cell senescence and concomitant accumulation of p62 and ubiquitinated proteins. Autophagy inhibition further enhanced accumulations of p62 and ubiquitinated proteins, resulting in increased senescence and senescence-associated secretory phenotype (SASP) with interleukin (IL)-8 secretion. Conversely, autophagy activation by Torin1, a mammalian target of rapamycin (mTOR inhibitor), suppressed accumulations of p62 and ubiquitinated proteins and inhibits cell senescence. Despite increased baseline activity, autophagy induction in response to CSE was significantly decreased in HBEC from COPD patients. Increased accumulations of p62 and ubiquitinated proteins were detected in lung homogenates from COPD patients. Insufficient autophagic clearance of damaged proteins, including ubiquitinated proteins, is involved in accelerated cell senescence in COPD, suggesting a novel protective role for autophagy in the tobacco smoke-induced senescence-associated lung disease, COPD.


Journal of Immunology | 2014

Autophagy induction by SIRT6 through attenuation of insulin-like growth factor signaling is involved in the regulation of human bronchial epithelial cell senescence.

Naoki Takasaka; Jun Araya; Hiromichi Hara; Saburo Ito; Kenji Kobayashi; Yusuke Kurita; Hiroshi Wakui; Yutaka Yoshii; Yoko Yumino; Satoko Fujii; Shunsuke Minagawa; Chikako Tsurushige; Jun Kojima; Takanori Numata; Kenichiro Shimizu; Makoto Kawaishi; Yumi Kaneko; Noriki Kamiya; Jun Hirano; Makoto Odaka; Toshiaki Morikawa; Stephen L. Nishimura; Katsutoshi Nakayama; Kazuyoshi Kuwano

Cigarette smoke (CS)–induced cellular senescence has been implicated in the pathogenesis of chronic obstructive pulmonary disease, and SIRT6, a histone deacetylase, antagonizes this senescence, presumably through the attenuation of insulin-like growth factor (IGF)-Akt signaling. Autophagy controls cellular senescence by eliminating damaged cellular components and is negatively regulated by IGF-Akt signaling through the mammalian target of rapamycin (mTOR). SIRT1, a representative sirtuin family, has been demonstrated to activate autophagy, but a role for SIRT6 in autophagy activation has not been shown. Therefore, we sought to investigate the regulatory role for SIRT6 in autophagy activation during CS-induced cellular senescence. SIRT6 expression levels were modulated by cDNA and small interfering RNA transfection in human bronchial epithelial cells (HBECs). Senescence-associated β-galactosidase staining and Western blotting of p21 were performed to evaluate senescence. We demonstrated that SIRT6 expression levels were decreased in lung homogenates from chronic obstructive pulmonary disease patients, and SIRT6 expression levels correlated significantly with the percentage of forced expiratory volume in 1 s/forced vital capacity. CS extract (CSE) suppressed SIRT6 expression in HBECs. CSE-induced HBEC senescence was inhibited by SIRT6 overexpression, whereas SIRT6 knockdown and mutant SIRT6 (H133Y) without histone deacetylase activity enhanced HBEC senescence. SIRT6 overexpression induced autophagy via attenuation of IGF-Akt-mTOR signaling. Conversely, SIRT6 knockdown and overexpression of a mutant SIRT6 (H133Y) inhibited autophagy. Autophagy inhibition by knockdown of ATG5 and LC3B attenuated the antisenescent effect of SIRT6 overexpression. These results suggest that SIRT6 is involved in CSE-induced HBEC senescence via autophagy regulation, which can be attributed to attenuation of IGF-Akt-mTOR signaling.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2013

Mitochondrial fragmentation in cigarette smoke-induced bronchial epithelial cell senescence

Hiromichi Hara; Jun Araya; Saburo Ito; Kenji Kobayashi; Naoki Takasaka; Yutaka Yoshii; Hiroshi Wakui; Jun Kojima; Kenichiro Shimizu; Takanori Numata; Makoto Kawaishi; Noriki Kamiya; Makoto Odaka; Toshiaki Morikawa; Yumi Kaneko; Katsutoshi Nakayama; Kazuyoshi Kuwano

Mitochondria are dynamic organelles that continuously change their shape through fission and fusion. Disruption of mitochondrial dynamics is involved in disease pathology through excessive reactive oxygen species (ROS) production. Accelerated cellular senescence resulting from cigarette smoke exposure with excessive ROS production has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Hence, we investigated the involvement of mitochondrial dynamics and ROS production in terms of cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBEC). Mitochondrial morphology was examined by electron microscopy and fluorescence microscopy. Senescence-associated β-galactosidase staining and p21 Western blotting of primary HBEC were performed to evaluate cellular senescence. Mitochondrial-specific superoxide production was measured by MitoSOX staining. Mitochondrial fragmentation was induced by knockdown of mitochondrial fusion proteins (OPA1 or Mitofusins) by small-interfering RNA transfection. N-acetylcysteine and Mito-TEMPO were used as antioxidants. Mitochondria in bronchial epithelial cells were prone to be more fragmented in COPD lung tissues. CSE induced mitochondrial fragmentation and mitochondrial ROS production, which were responsible for acceleration of cellular senescence in HBEC. Mitochondrial fragmentation induced by knockdown of fusion proteins also increased mitochondrial ROS production and percentages of senescent cells. HBEC senescence and mitochondria fragmentation in response to CSE treatment were inhibited in the presence of antioxidants. CSE-induced mitochondrial fragmentation is involved in cellular senescence through the mechanism of mitochondrial ROS production. Hence, disruption of mitochondrial dynamics may be a part of the pathogenic sequence of COPD development.


Autophagy | 2015

PARK2-mediated mitophagy is involved in regulation of HBEC senescence in COPD pathogenesis.

Saburo Ito; Jun Araya; Yusuke Kurita; Kenji Kobayashi; Naoki Takasaka; Masahiro Yoshida; Hiromichi Hara; Shunsuke Minagawa; Hiroshi Wakui; Satoko Fujii; Jun Kojima; Kenichiro Shimizu; Takanori Numata; Makoto Kawaishi; Makoto Odaka; Toshiaki Morikawa; Toru Harada; Stephen L. Nishimura; Yumi Kaneko; Katsutoshi Nakayama; Kazuyoshi Kuwano

Cigarette smoke (CS)-induced mitochondrial damage with increased reactive oxygen species (ROS) production has been implicated in COPD pathogenesis by accelerating senescence. Mitophagy may play a pivotal role for removal of CS-induced damaged mitochondria, and the PINK1 (PTEN-induced putative kinase 1)-PARK2 pathway has been proposed as a crucial mechanism for mitophagic degradation. Therefore, we sought to investigate to determine if PINK1-PARK2-mediated mitophagy is involved in the regulation of CS extract (CSE)-induced cell senescence and in COPD pathogenesis. Mitochondrial damage, ROS production, and cell senescence were evaluated in primary human bronchial epithelial cells (HBEC). Mitophagy was assessed in BEAS-2B cells stably expressing EGFP-LC3B, using confocal microscopy to measure colocalization between TOMM20-stained mitochondria and EGFP-LC3B dots as a representation of autophagosome formation. To elucidate the involvement of PINK1 and PARK2 in mitophagy, knockdown and overexpression experiments were performed. PINK1 and PARK2 protein levels in lungs from patients were evaluated by means of lung homogenate and immunohistochemistry. We demonstrated that CSE-induced mitochondrial damage was accompanied by increased ROS production and HBEC senescence. CSE-induced mitophagy was inhibited by PINK1 and PARK2 knockdown, resulting in enhanced mitochondrial ROS production and cellular senescence in HBEC. Evaluation of protein levels demonstrated decreased PARK2 in COPD lungs compared with non-COPD lungs. These results suggest that PINK1-PARK2 pathway-mediated mitophagy plays a key regulatory role in CSE-induced mitochondrial ROS production and cellular senescence in HBEC. Reduced PARK2 expression levels in COPD lung suggest that insufficient mitophagy is a part of the pathogenic sequence of COPD.


American Journal of Respiratory Cell and Molecular Biology | 2012

Involvement of creatine kinase B in cigarette smoke-induced bronchial epithelial cell senescence.

Hiromichi Hara; Jun Araya; Naoki Takasaka; Satoko Fujii; Jun Kojima; Yoko Yumino; Kenichiro Shimizu; Takeo Ishikawa; Takanori Numata; Makoto Kawaishi; Keisuke Saito; Jun Hirano; Makoto Odaka; Toshiaki Morikawa; Hiroshi Hano; Katsutoshi Nakayama; Kazuyoshi Kuwano

Cigarette smoke induces damage to proteins and organelles by oxidative stress, resulting in accelerated epithelial cell senescence in the lung, which is implicated in chronic obstructive pulmonary disease (COPD) pathogenesis. Although the detailed molecular mechanisms are not fully understood, cellular energy status is one of the most crucial determinants for cell senescence. Creatine kinase (CK) is a constitutive enzyme, playing regulatory roles in energy homeostasis of cells. Among two isozymes, brain-type CK (CKB) is the predominant CK in lung tissue. In this study, we investigated the role of CKB in cigarette smoke extract (CSE)-induced cellular senescence in human bronchial epithelial cells (HBECs). Primary HBECs and Beas2B cells were used. Protein carbonylation was evaluated as a marker of oxidative protein damage. Cellular senescence was evaluated by senescence-associated β-galactosidase staining. CKB inhibition was examined by small interfering RNA and cyclocreatine. Secretion of IL-8, a hallmark of senescence-associated secretary phenotype, was measured by ELISA. CKB expression levels were reduced in HBECs from patients with COPD compared with that of HBECs from nonsmokers. CSE induced carbonylation of CKB and subsequently decreased CKB protein levels, which was reversed by a proteasome inhibitor. CKB inhibition alone induced cell senescence, and further enhanced CSE-induced cell senescence and IL-8 secretion. CSE-induced oxidation of CKB is a trigger for proteasomal degradation. Concomitant loss of enzymatic activity regulating energy homeostasis may lead to the acceleration of bronchial epithelial cell senescence, which is implicated in the pathogenesis of COPD.


European Journal of Cardio-Thoracic Surgery | 2010

Unilateral thoracoscopic subtotal thymectomy for the treatment of stage I and II thymoma

Makoto Odaka; Tadashi Akiba; Mitsuo Yabe; Miyako Hiramatsu; Hideki Matsudaira; Jun Hirano; Toshiaki Morikawa

OBJECTIVE The purpose of this study was to determine the feasibility of thoracoscopic thymectomy for the treatment of Masaoka stage I and II thymoma. METHODS We evaluated the short-term outcomes of 40 patients undergoing surgery for Masaoka stage I and II thymomas without myasthenia gravis between July 2000 and July 2008. Of these, 22 patients underwent complete thymoma resection using unilateral thoracoscopic subtotal thymectomy (UTST group), and 18 patients underwent trans-sternal thymectomy (TST group). RESULTS Intra-operative blood loss amounts did not differ significantly between the UTST and TST groups (100.6 ml and 208.1 ml, respectively, p=0.0513). The duration of the postoperative hospital stay was significantly shortened in the UTST group (4.6 days vs 11.2 days, p<0.0001). No patient in the UTST group underwent conversion to open surgery. No severe surgical complications, such as bleeding due to injury to the left brachiocephalic vein, and no postoperative complications, were detected in this series. CONCLUSIONS These preliminary results suggest that thoracoscopic thymectomy for Masaoka stage I and II thymoma is technically feasible and safe, and it is less invasive for the patient. Nevertheless, this procedure requires further investigation in a large series with a longer follow-up.


Respiratory Research | 2016

Metformin attenuates lung fibrosis development via NOX4 suppression

Nahoko Sato; Naoki Takasaka; Masahiro Yoshida; Kazuya Tsubouchi; Shunsuke Minagawa; Jun Araya; Nayuta Saito; Yu Fujita; Yusuke Kurita; Kenji Kobayashi; Saburo Ito; Hiromichi Hara; Tsukasa Kadota; Haruhiko Yanagisawa; Mitsuo Hashimoto; Hirofumi Utsumi; Hiroshi Wakui; Jun Kojima; Takanori Numata; Yumi Kaneko; Makoto Odaka; Toshiaki Morikawa; Katsutoshi Nakayama; Hirotsugu Kohrogi; Kazuyoshi Kuwano

BackgroundAccumulation of profibrotic myofibroblasts in fibroblastic foci (FF) is a crucial process for development of fibrosis during idiopathic pulmonary fibrosis (IPF) pathogenesis, and transforming growth factor (TGF)-β plays a key regulatory role in myofibroblast differentiation. Reactive oxygen species (ROS) has been proposed to be involved in the mechanism for TGF-β-induced myofibroblast differentiation. Metformin is a biguanide antidiabetic medication and its pharmacological action is mediated through the activation of AMP-activated protein kinase (AMPK), which regulates not only energy homeostasis but also stress responses, including ROS. Therefore, we sought to investigate the inhibitory role of metformin in lung fibrosis development via modulating TGF-β signaling.MethodsTGF-β-induced myofibroblast differentiation in lung fibroblasts (LF) was used for in vitro models. The anti-fibrotic role of metfromin was examined in a bleomycin (BLM)-induced lung fibrosis model.ResultsWe found that TGF-β-induced myofibroblast differentiation was clearly inhibited by metformin treatment in LF. Metformin-mediated activation of AMPK was responsible for inhibiting TGF-β-induced NOX4 expression. NOX4 knockdown and N-acetylcysteine (NAC) treatment illustrated that NOX4-derived ROS generation was critical for TGF-β-induced SMAD phosphorylation and myofibroblast differentiation. BLM treatment induced development of lung fibrosis with concomitantly enhanced NOX4 expression and SMAD phosphorylation, which was efficiently inhibited by metformin. Increased NOX4 expression levels were also observed in FF of IPF lungs and LF isolated from IPF patients.ConclusionsThese findings suggest that metformin can be a promising anti-fibrotic modality of treatment for IPF affected by TGF-β.


The Japanese Journal of Thoracic and Cardiovascular Surgery | 2010

Pulmonary vein analysis using three-dimensional computed tomography angiography for thoracic surgery

Tadashi Akiba; Makoto Odaka; Junta Harada; Susumu Kobayashi; Toshiaki Morikawa

ObjectiveLittle information is available regarding the variations in pulmonary vein anatomy for the purpose of thoracic or video-assisted thoracoscopic surgery (VATS). To learn about the types and frequency of pulmonary vein variations for VATS, we reviewed a “tailor-made virtual lung” of patients that was constructed using three-dimensional multidetector computed tomography (3D-MDCT) angiography.MethodsWe reviewed routine 64-row 3D-MDCT pulmonary angiography of 140 patients before surgery between June 2006 and February 2009.ResultsWe observed that most patients had the expected anatomy (98%) on the left side and on the right side (86%). On the right side, 10% of patients had three branches, and 4% patients had four or five branches. Independent drainage of the middle lobe vein directly into the left atrium was observed in 8% patients. Common ostia were observed on the left side in 33% and on the right side in 13% of the patients. The right inferior pulmonary veins branched immediately in 23% of the patients. Right isolated superior posterior branches were observed occasionally (2%).ConclusionsWe observed common ostia more frequently on the left side than on the right. The middle lobe variations were frequent, and the right inferior pulmonary vein often divided at the root. Preoperative 3D-MDCT presented correct pulmonary vein anatomy of the patients.

Collaboration


Dive into the Makoto Odaka's collaboration.

Top Co-Authors

Avatar

Toshiaki Morikawa

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hisatoshi Asano

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Makoto Yamashita

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jun Araya

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Katsutoshi Nakayama

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kazuyoshi Kuwano

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Tadashi Akiba

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hiromichi Hara

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jun Hirano

Jikei University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Takanori Numata

Jikei University School of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge