Malene Hansen
Discovery Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malene Hansen.
Current Biology | 2011
Louis R. Lapierre; Sara Gelino; Alicia Meléndez; Malene Hansen
BACKGROUNDnThe cellular recycling process of autophagy is emerging as a key player in several longevity pathways in Caenorhabditis elegans. Here, we identify a role for autophagy in long-lived animals lacking a germline and show that autophagy and lipid metabolism work interdependently to modulate aging in this longevity model.nnnRESULTSnGermline removal extends life span in C.xa0elegans via genes such as the lipase LIPL-4; however, less is known of the cellular basis for this life-span extension. Here, we show that germline loss induces autophagy gene expression via the forkhead box A (FOXA) transcription factor PHA-4 and that autophagy is required to extend longevity. We identify a novel link between autophagy and LIPL-4, because autophagy is required to maintain high lipase activity in germline-deficient animals. Reciprocally, lipl-4 is required for autophagy induction. Coordination between autophagy and lipolysis is further supported by the finding that inhibition of TOR (target of rapamycin), a major negative regulator of autophagy, induces lipl-4 expression, and TOR levels are reduced in germline-less animals. TOR may therefore function as a common upstream regulator of both autophagy and lipl-4 expression in germline-less animals. Importantly, we find that the link between autophagy and LIPL-4 is relevant to longevity, because autophagy is induced in animals overexpressing LIPL-4 and autophagy is required for their long life span, recapitulating observations in germline-less animals.nnnCONCLUSIONSnCollectively, our data offer a novel mechanism by which autophagy and the lipase LIPL-4 interdependently modulate aging in germline-deficient C.xa0elegans by maintaining lipid homeostasis to prolong life span.
The EMBO Journal | 2017
Lorenzo Galluzzi; Eric H. Baehrecke; Andrea Ballabio; Patricia Boya; José Manuel Bravo-San Pedro; Francesco Cecconi; Augustine M. K. Choi; Charleen T. Chu; Patrice Codogno; María I. Colombo; Ana Maria Cuervo; Jayanta Debnath; Vojo Deretic; Ivan Dikic; Eeva-Liisa Eskelinen; Gian Maria Fimia; Simone Fulda; David A. Gewirtz; Douglas R. Green; Malene Hansen; J. Wade Harper; Marja Jäättelä; Terje Johansen; Gábor Juhász; Alec C. Kimmelman; Claudine Kraft; Nicholas T. Ktistakis; Sharad Kumar; Beth Levine; Carlos López-Otín
Over the past two decades, the molecular machinery that underlies autophagic responses has been characterized with ever increasing precision in multiple model organisms. Moreover, it has become clear that autophagy and autophagy‐related processes have profound implications for human pathophysiology. However, considerable confusion persists about the use of appropriate terms to indicate specific types of autophagy and some components of the autophagy machinery, which may have detrimental effects on the expansion of the field. Driven by the overt recognition of such a potential obstacle, a panel of leading experts in the field attempts here to define several autophagy‐related terms based on specific biochemical features. The ultimate objective of this collaborative exchange is to formulate recommendations that facilitate the dissemination of knowledge within and outside the field of autophagy research.
Nature Communications | 2013
Louis R. Lapierre; C. Daniel De Magalhaes Filho; Philip R. McQuary; Chu-Chiao Chu; Orane Visvikis; Jessica T. Chang; Sara Gelino; Binnan Ong; Andrew E. Davis; Javier E. Irazoqui; Andrew Dillin; Malene Hansen
Autophagy is a cellular recycling process that has an important anti-aging role, but the underlying molecular mechanism is not well understood. The mammalian transcription factor EB (TFEB) was recently shown to regulate multiple genes in the autophagy process. Here we show that the predicted TFEB orthologue HLH-30 regulates autophagy in Caenorhabditis elegans and, in addition, has a key role in lifespan determination. We demonstrate that hlh-30 is essential for the extended lifespan of Caenorhabditis elegans in six mechanistically distinct longevity models, and overexpression of HLH-30 extends lifespan. Nuclear localization of HLH-30 is increased in all six Caenorhabditis elegans models and, notably, nuclear TFEB levels are augmented in the livers of mice subjected to dietary restriction, a known longevity-extending regimen. Collectively, our results demonstrate a conserved role for HLH-30 and TFEB in autophagy, and possibly longevity, and identify HLH-30 as a uniquely important transcription factor for lifespan modulation in Caenorhabditis elegans.
Experimental pathology | 2012
Sara Gelino; Malene Hansen
Autophagy is a cytoplasmic catabolic process that protects the cell against stressful conditions. Damaged cellular components are funneled by autophagy into the lysosomes, where they are degraded and can be re-used as alternative building blocks for protein synthesis and cellular repair. In contrast, aging is the gradual failure over time of cellular repair mechanisms that leads to the accumulation of molecular and cellular damage and loss of function. The cells capacity for autophagic degradation also declines with age, and this in itself may contribute to the aging process. Studies in model organisms ranging from yeast to mice have shown that single-gene mutations can extend lifespan in an evolutionarily conserved fashion, and provide evidence that the aging process can be modulated. Interestingly, autophagy is induced in a seemingly beneficial manner by many of the same perturbations that extend lifespan, including mutations in key signaling pathways such as the insulin/IGF-1 and TOR pathways. Here, we review recent progress, primarily derived from genetic studies with model organisms, in understanding the role of autophagy in aging and age-related diseases.
Experimental Gerontology | 2013
Alfonso Schiavi; Alessandro Torgovnick; Alison Kell; Evgenia Megalou; Natascha Castelein; Ilaria Guccini; Laura Marzocchella; Sara Gelino; Malene Hansen; Florence Malisan; Ivano Condò; Roberto Bei; Shane L. Rea; Bart P. Braeckman; Nektarios Tavernarakis; Roberto Testi; Natascia Ventura
Severe mitochondria deficiency leads to a number of devastating degenerative disorders, yet, mild mitochondrial dysfunction in different species, including the nematode Caenorhabditis elegans, can have pro-longevity effects. This apparent paradox indicates that cellular adaptation to partial mitochondrial stress can induce beneficial responses, but how this is achieved is largely unknown. Complete absence of frataxin, the mitochondrial protein defective in patients with Friedreichs ataxia, is lethal in C. elegans, while its partial deficiency extends animal lifespan in a p53 dependent manner. In this paper we provide further insight into frataxin control of C. elegans longevity by showing that a substantial reduction of frataxin protein expression is required to extend lifespan, affect sensory neurons functionality, remodel lipid metabolism and trigger autophagy. We find that Beclin and p53 genes are required to induce autophagy and concurrently reduce lipid storages and extend animal lifespan in response to frataxin suppression. Reciprocally, frataxin expression modulates autophagy in the absence of p53. Human Friedreich ataxia-derived lymphoblasts also display increased autophagy, indicating an evolutionarily conserved response to reduced frataxin expression. In sum, we demonstrate a causal connection between induction of autophagy and lifespan extension following reduced frataxin expression, thus providing the rationale for investigating autophagy in the pathogenesis and treatment of Friedreichs ataxia and possibly other human mitochondria-associated disorders.
PLOS Genetics | 2016
Sara Gelino; Jessica T. Chang; Caroline Kumsta; Xingyu She; Andrew Davis; Christian Nguyen; Siler H. Panowski; Malene Hansen
Dietary restriction (DR) is a dietary regimen that extends lifespan in many organisms. One mechanism contributing to the conserved effect of DR on longevity is the cellular recycling process autophagy, which is induced in response to nutrient scarcity and increases sequestration of cytosolic material into double-membrane autophagosomes for degradation in the lysosome. Although autophagy plays a direct role in DR-mediated lifespan extension in the nematode Caenorhabditis elegans, the contribution of autophagy in individual tissues remains unclear. In this study, we show a critical role for autophagy in the intestine, a major metabolic tissue, to ensure lifespan extension of dietary-restricted eat-2 mutants. The intestine of eat-2 mutants has an enlarged lysosomal compartment and flux assays indicate increased turnover of autophagosomes, consistent with an induction of autophagy in this tissue. This increase in intestinal autophagy may underlie the improved intestinal integrity we observe in eat-2 mutants, since whole-body and intestinal-specific inhibition of autophagy in eat-2 mutants greatly impairs the intestinal barrier function. Interestingly, intestinal-specific inhibition of autophagy in eat-2 mutants leads to a decrease in motility with age, alluding to a potential cell non-autonomous role for autophagy in the intestine. Collectively, these results highlight important functions for autophagy in the intestine of dietary-restricted C. elegans.
Ageing Research Reviews | 2017
Pankaj Kapahi; Matt Kaeberlein; Malene Hansen
Dietary restriction (DR) is the most robust environmental manipulation known to increase active and healthy lifespan in many species. Despite differences in the protocols and the way DR is carried out in different organisms, conserved relationships are emerging among multiple species. Elegant studies from numerous model organisms are further defining the importance of various nutrient-signaling pathways including mTOR (mechanistic target of rapamycin), insulin/IGF-1-like signaling and sirtuins in mediating the effects of DR. We here review current advances in our understanding of the molecular mechanisms altered by DR to promote lifespan in three major invertebrate models, the budding yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans, and the fruit fly Drosophila melanogaster.
Nature Communications | 2017
Caroline Kumsta; Jessica T. Chang; Jessica Schmalz; Malene Hansen
Stress-response pathways have evolved to maintain cellular homeostasis and to ensure the survival of organisms under changing environmental conditions. Whereas severe stress is detrimental, mild stress can be beneficial for health and survival, known as hormesis. Although the universally conserved heat-shock response regulated by transcription factor HSF-1 has been implicated as an effector mechanism, the role and possible interplay with other cellular processes, such as autophagy, remains poorly understood. Here we show that autophagy is induced in multiple tissues of Caenorhabditis elegans following hormetic heat stress or HSF-1 overexpression. Autophagy-related genes are required for the thermoresistance and longevity of animals exposed to hormetic heat shock or HSF-1 overexpression. Hormetic heat shock also reduces the progressive accumulation of PolyQ aggregates in an autophagy-dependent manner. These findings demonstrate that autophagy contributes to stress resistance and hormesis, and reveal a requirement for autophagy in HSF-1-regulated functions in the heat-shock response, proteostasis and ageing.
Trends in Cell Biology | 2016
Malene Hansen; Brian K. Kennedy
Once thought to be impossible, it is now clear that changing the activity of several conserved genetic pathways can lead to lifespan extension in experimental organisms. In humans, however, the goal is to extend healthspan, the functional and disease-free period of life. Are the current pathways to lifespan extension also improving healthspan?
Cell Reports | 2016
Philip R. McQuary; Chen Yu Liao; Jessica T. Chang; Caroline Kumsta; Xingyu She; Andrew Davis; Chu Chiao Chu; Sara Gelino; Rafael L. Gomez-Amaro; Michael Petrascheck; Laurence M. Brill; Warren C. Ladiges; Brian K. Kennedy; Malene Hansen
Deficiency of S6 kinase (S6K) extends the lifespan of multiple species, but the underlying mechanisms are unclear. To discover potential effectors of S6K-mediated longevity, we performed a proteomics analysis of long-lived rsks-1/S6K C. elegans mutants compared to wild-type animals. We identified the arginine kinase ARGK-1 as the most significantly enriched protein in rsks-1/S6K mutants. ARGK-1 is an ortholog of mammalian creatine kinase, which maintains cellular ATP levels. We found that argk-1 is possibly a selective effector of rsks-1/S6K-mediated longevity and that overexpression of ARGK-1 extends C. elegans lifespan, in part by activating the energy sensor AAK-2/AMPK. argk-1 is also required for the reduced body size and increased stress resistance observed in rsks-1/S6K mutants. Finally, creatine kinase levels are increased in the brains of S6K1 knockout mice. Our study identifies ARGK-1 as a longevity effector in C. elegans with reduced RSKS-1/S6K levels.