Małgorzata Andrzejewska
Poznan University of Medical Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Małgorzata Andrzejewska.
Biomedicine & Pharmacotherapy | 2013
Radosław Januchowski; Piotr Zawierucha; Małgorzata Andrzejewska; Marcin Rucinski; Maciej Zabel
Multiple drug resistance of cancer cells is multifactorial. A microarray technique may provide information about new candidate genes playing a role in drug resistance. Drug membrane transporters from ABC and SLC families play a main role in this phenomenon. This study demonstrates alterations in ABC and SLC gene expression levels in methotrexate, cisplatin, doxorubicin, vincristine, topotecan and paclitaxel-resistant variant of W1 ovarian cancer cell line. Resistant W1 cell lines were derived by stepwise selection of cells in increasing concentration of drugs. Affymetrix GeneChip(®) Human Genome U219 Array Strip was used for hybridizations. Statistical significance was determined by independent sample t-test. The genes having altered expression levels in drug-resistant sublines were selected and filtered by scater plot. Genes up/downregulated more than threefolds were selected and listed. Among ABC genes, seven were upregulated and three were downregulated. Three genes: ABCB1, ABCB4 and ABCG2 were upregulated very significantly (over tenfold). One ABCA8 was significantly downregulated. Among 38 SLC genes, 18 were upregulated, 16 were downregulated and four were up- or downregulated dependent on the cell line. Expression of 10 SLC genes was changed very significantly (over tenfold). Four genes were significantly increased: SLC6A1, SLC9A2, SLC12A1, SLC16A6 and six genes were significantly decreased: SLC2A14, SLC7A3, SLC7A8, SLC7A11, SLC16A14, SLC38A9. Based on the expression profiles, our results provide a preliminary insight into the relationship between drug resistance and expression of membrane transporters involved in drug resistance. Correlation of specific drug transporter with drug resistance requires further analysis.
BioMed Research International | 2013
Radosław Januchowski; Karolina Wojtowicz; Patrycja Sujka-Kordowska; Małgorzata Andrzejewska; Maciej Zabel
Ovarian cancer is the leading cause of death among gynaecological malignancies. Multiple drug resistance makes cancer cells insensitive to chemotherapy. In this study, we developed six primary ovarian cancer cell lines (W1MR, W1CR, W1DR, W1VR, W1TR, and W1PR) resistant to drugs such as methotrexate, cisplatin, doxorubicin, vincristine, topotecan, and paclitaxel. A chemosensitivity assay MTT test was performed to assess drug cross-resistance. Quantitative real-time polymerase chain reaction and Western blot were also performed to determine mRNA and protein expression of genes involved in chemoresistance. We observed high cross-resistance to doxorubicin, vincristine, and paclitaxel in the cell lines resistant to these agents. We also found a significant correlation between resistance to these drugs and increased expression of P-gp. Two different mechanisms of topotecan resistance were observed in the W1TR and W1PR cell lines. We did not observe any correlation between MRP2 transcript and protein levels. Cell lines resistant to agents used in ovarian cancer treatment remained sensitive to methotrexate. The main mechanisms of drug resistance were due to P-gp expression in the doxorubicin, vincristine, and paclitaxel resistant cell lines and BCRP expression in the topotecan resistant cell line.
Biomedicine & Pharmacotherapy | 2014
Radosław Januchowski; Piotr Zawierucha; Marcin Rucinski; Małgorzata Andrzejewska; Karolina Wojtowicz; Michał Nowicki; Maciej Zabel
Ovarian cancer is characterized by the higher mortality among gynecological cancers. In results of MDR development during chemotherapy cancer cells become resistant to further treatment. Microarray techniques can provide information about MDR development at gene expression level. ABC and SLC transporters are most important proteins responsible for this phenomenon. In this study changes of ABC and SLC genes expression pattern in drugs resistant sublines of the A2780 ovarian cancer cell line were demonstrated. The cytostatic resistant sublines were generated by culture of A2780 cell line with an increasing concentration of the indicated drugs. As screening methods, we used Affymetrix U219 Human Genome microarrays. Independent t-tests were used to determinate statistical significances of results. Genes that expression levels were higher than assumed threshold (upregulated above threefold and downregulated under -3 fold) were visualized using scatter plot method, selected and listed in table. Between the ABC genes increased expression of seven genes and decreased expression of three genes were observed. Expression of two genes was increased or decreased depending on the cell line. We observed significant (more than tenfold) increase in expression of four ABC genes: ABCA8, ABCB1, ABCB4 and ABCG2 and decreased expression of ABCA3 gene. We also observed changes in expression of 32 SLC genes. Between them we observe increased expression of 17 genes and decreased expression of 15 genes. Expression of four genes was increased or decreased dependent on cell line. The expression of nine SLC genes increased or decreased very significantly (more than tenfold). Five genes were significantly upregulated: SLC2A9, SLC16A3, SLC16A14, SLC38A4 and SLC39A8. Four additional genes were significantly downregulated: SLC2A14, SLC6A15, SLC8A1 and SLC27A2. Expression profiles of these genes give strong arguments for assumption of correlation between expression of ABC and SLC genes and drug resistance phenomenon. Identifying correlations between specific drug transporters and cytostatic drug resistance will require further investigation.
Biomedicine & Pharmacotherapy | 2013
Witold Szaflarski; Patrycja Sujka-Kordowska; Radosław Januchowski; Karolina Wojtowicz; Małgorzata Andrzejewska; Michał Nowicki; Maciej Zabel
The high expression of P-glycoprotein (P-gp) belongs to one of the most important factors causing multidrug-resistant (MDR) of cancer cells. P-gp is primarily associated with plasma membrane; however, small fraction of that protein is present in the nuclear envelope. Such phenomenon is observed in cancer cells and may result in the selection of MDR cells as the secondary tumor and/or resistant metastasis that significantly shorten patient survival rate. Here, we confirmed nuclear localization of P-gp in resistant LoVo cells and demonstrated its impact on doxorubicin efflux from the nucleus to cytoplasm. Furthermore, we showed that P-gp located at the nuclear envelope might have a different glycoside chain when compared to the form located in the cytoplasm. It suggests that the glycoside chain plays a role in the intracellular trafficking of P-gp and may decide about the destination place in the cell.
Biomedicine & Pharmacotherapy | 2014
Radosław Januchowski; Karolina Wojtowicz; Małgorzata Andrzejewska; Maciej Zabel
Multiple drug resistance is one of the main reasons for low chemotherapeutic efficiency in cancer patients. The proteins that are most frequently implicated to play a role in this mechanism are transmembrane proteins that are members of the ABC family. The most important ABC protein is MDR1 (ABCB1), which is expressed in over fifty percent of drug-resistant cancers. The phosphatidylcholine transporter, MDR3 (ABCB4), exhibits high homology with MDR1. An increasing body of evidence suggests that MDR3 plays a role in drug resistance. In the present study, we used doxorubicin-, paclitaxel- and vincristine-resistant cancer cell lines. A chemosensitivity assay MTT test was performed to assess drug resistance. Quantitative real-time polymerase chain reaction analyses were performed to determine the mRNA expression levels of the MDR1 and MDR3 genes. We observed dose-dependent responses to doxorubicin, paclitaxel and vincristine in the investigated cell lines. In all of the drug-resistant cell lines that we studied, we observed increased MDR1 and MDR3 transcript levels. In a doxorubicin-resistant variant of the LoVo cell line (LoVoDx), MDR3 was expressed at higher levels than MDR1. We also observed high correlations between MDR3 expression and resistance to doxorubicin and paclitaxel. Our results suggest that MDR3 plays an active and important role in drug resistance in the investigated cell lines.
International Journal of Oncology | 2013
Witold Szaflarski; Patrycja Sujka-Kordowska; Bartosz Pula; Karolina Jaszczyńska-Nowinka; Małgorzata Andrzejewska; Piotr Zawierucha; Piotr Dziegiel; Michał Nowicki; Pavel Ivanov; Maciej Zabel
Vaults are cytoplasmic ribonucleoprotein particles composed of three proteins (MVP, TEP1, vPARP) and vault‑associated RNAs (vRNAs). Although the cellular functions of vaults remain unclear, vaults are strongly linked to the development of multidrug resistance (MDR), the major obstacle to the efficient treatment of cancers. Available published data suggest that vaults and their components are frequently upregulated in broad variety of multidrug-resistant cancer cell lines and tumors of different histological origin. Here, we provide detailed analysis of vault protein expression in post-surgery ovarian cancer samples from patients that were not exposed to chemotherapy. Our analysis suggests that vault proteins are expressed in the ovaries of healthy individuals but their expression in cancer patients is changed. Specifically, MVP, TEP1 and vPARP mRNA levels are significantly decreased in cancer samples with tendency of lower expression in higher-grade tumors. The pattern of vault protein mRNA expression is strongly correlated with the expression of other MDR-associated proteins such as MDR1, MRP1 and BCRP. Surprisingly, the protein levels of MVP, TEP1 and vPARP are actually increased in the higher‑grade tumors suggesting existence of post-transcriptional regulation of vault component production.
Wspolczesna Onkologia-Contemporary Oncology | 2012
Aldona Kasprzak; Witold Szaflarski; Jacek Szmeja; Małgorzata Andrzejewska; Wiesława Przybyszewska; Maria Koczorowska; Michał Drews; Elżbieta Kaczmarek
Aim of the study Several epidemiological studies have attempted to demonstrate a relationship between increased serum level of insulin-like growth factor 1 (IGF-1) and an augmented risk of developing colorectal cancers (CRC). The human IGF-1 gene is composed of 6 exons and demonstrated expression of 6 different splice variants (isoforms) of mRNA (IA, IB, IC, IIA, IIB and IIC). The aim of the study was to evaluate the expression of different isoforms of IGF-1 mRNA in CRC and normal colon tissue. Material and methods 13 paired tissue specimens (colorectal tumor and non-tumor tissues) were analyzed using both quantitative polymerase chain reaction (PCR) and immunocytochemistry methods (IHC). The expression of classes I and II and variants A, B, C of IGF-1 mRNA were measured. Results In CRC higher amounts of IGF-1 class II mRNA than class I mRNA were detected. Among A, B, C isoforms, A variant of IGF-1 mRNA prevailed. The amounts of IGF-1 class I and class II mRNAs and of IGF-1 variant B mRNA were lowered in CRC as compared to the control. In CRC significant correlations were detected between reciprocal expression of class I and class II as well as between I and II isoforms and A, B and C. Conclusions Expression of IGF-1 mRNA isoforms differs between normal and CRC tissues. Even if all isoforms of IGF-1 mRNA manifested correlations with each other in tissues of CRC, expression of all transcripts (except that of isoform A) was significantly decreased as compared to the control.
World Journal of Gastroenterology | 2018
Aldona Kasprzak; Elżbieta Siodła; Małgorzata Andrzejewska; Jacek Szmeja; Agnieszka Seraszek-Jaros; Szczepan Cofta; Witold Szaflarski
AIM To determine tissue expression (mRNA, protein) of two types of mucins [mucin 1 (MUC1) and mucin 2 (MUC2)] in patients with colorectal cancer (CRC). METHODS Expression of membrane-bound mucin (MUC1) and secretory mucin (MUC2) in CRC (mRNA, protein) were analyzed in tissue material including fragments of tumors obtained from CRC patients (n = 34), and fragments of normal colorectal tissue from the same patients (control). The analysis was conducted using real-time quantitative polymerase chain reaction (RT-qPCR) (transcripts), immunohistochemistry (IHC) (apomucins), and the modern approach for morphometric analysis of IHC reaction (HSV filter software). Results on tissue expression of both mucins (mRNA, protein) were compared to histological alterations in colorectal cancer samples and correlated with selected clinical data in the patients. The statistical analysis was conducted using Statistica PL v. 12.0 software. RESULTS Significantly higher expression of the MUC1 mRNA in the CRC, compared with the control and the borderline correlation of mRNA expression with MUC1 protein levels in colorectal samples was observed. The expression of apomucins concerned cell membranes (MUC1) and cytoplasm (MUC2) and occurred both in control tissues and in most cancerous samples. There were no significant relationships between MUC1 (mRNA, protein) and the clinicopathological data of patients. MUC2 protein expression was significantly lower as compared to the control, while MUC2 mRNA expression was comparable in both groups. The MUC1/MUC2 ratio was significantly higher in CRC tissues than in the control. The higher expression of MUC2 was a feature of mucinous CRC subtypes, and characterized higher histological stage of tumors. Negative correlations have been obtained between MUC2 and the Ki-67 antigen, as well as between MUC2 and p53 protein expressions in CRC. CONCLUSION A combination of tissue overexpression of MUC1, reduced MUC2 expression, and high ratio of MUC1/MUC2 is a factor of poor prognosis in CRC patients. MUC2 tissue expression allows to differentiate mucinous and nonmucinous CRC subtypes.
International Journal of Molecular Sciences | 2018
Karolina Sterzyńska; Andrzej Klejewski; Karolina Wojtowicz; Monika Świerczewska; Małgorzata Andrzejewska; Damian Rusek; Maciej Sobkowski; Witold Kędzia; Jacek Brązert; Michał Nowicki; Radosław Januchowski
The major cause of ovarian cancer treatment failure in cancer patients is inherent or acquired during treatment drug resistance of cancer. Matrix Gla protein (MGP) is a secreted, non-collagenous extracellular matrix protein involved in inhibition of tissue calcification. Recently, MGP expression was related to cellular differentiation and tumor progression. A detailed MGP expression analysis in sensitive (A2780) and resistant to paclitaxel (PAC) (A2780PR) and topotecan (TOP) (A2780TR) ovarian cancer cell lines and their corresponding media was performed. MGP mRNA level (real time PCR analysis) and protein expression in cell lysates and cell culture medium (Western blot analysis) and protein expression in cancer cells (immunofluorescence analysis) and cancer patient lesions (immunohistochemistry) were determined in this study. We observed increased expression of MGP in PAC and TOP resistant cell lines at both mRNA and protein level. MGP protein was also detected in the corresponding culture media. Finally, we detected expression of MGP protein in ovarian cancer lesions from different histological type of cancer. MGP is an important factor that might contribute to cancer resistance mechanism by augmenting the interaction of cells with ECM components leading to increased resistance of ovarian cancer cells to paclitaxel and topotecan. Expression found in ovarian cancer tissue suggests its possible role in ovarian cancer pathogenesis.