Malgorzata Burek
University of Würzburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malgorzata Burek.
The Journal of Physiology | 2008
Carola Förster; Malgorzata Burek; Ignacio A. Romero; Babette B. Weksler; Pierre-Olivier Couraud; Detlev Drenckhahn
Homeostasis of the central nervous system (CNS) microenvironment is maintained by the blood–brain barrier (BBB) which regulates the transport of molecules from blood into brain and back. Many disorders change the functionality and integrity of the BBB. Glucocorticoids are being used sucessfully in the treatment of some disorders while their effects on others are questionable. In addition, conflicting results between clinical and experimental experience using animal models has arisen, so that the results of molecular studies in animal models need to be revisited in an appropriate in vitro model of the human BBB for more effective treatment strategies. Using the human brain microvascular endothelial cell line hCMEC/D3, the influence of glucocorticoids on the expression of barrier constituting adherens junction and tight junction transmembrane proteins (VE‐cadherin, occludin, claudins) was investigated and compared to other established BBB models. In hCMEC/D3 cells the administration of glucocorticoids induced expression of the targets occludin 2.75 ± 0.04‐fold and claudin‐5 up to 2.32 ± 0.11‐fold, which is likely to contribute to the more than threefold enhancement of transendothelial electrical resistance reflecting barrier tightness. Our analyses further provide direct evidence that the GC hydrocortisone prevents endothelial barrier breakdown in response to pro‐inflammatory stimuli (TNFα administration), which could be demonstrated to be partly based on maintenance of occludin levels. Our studies strongly suggest stabilization of BBB function as a mode of GC action on a molecular level in the human brain vasculature.
The Journal of Physiology | 2005
Carola Förster; Christine Silwedel; Nikola Golenhofen; Malgorzata Burek; Silke Kietz; Joachim Mankertz; Detlev Drenckhahn
Homeostasis of the central nervous system (CNS) microenvironment is essential for its normal function. It is maintained by the blood–brain barrier (BBB) which regulates the transport of molecules from blood into brain and backwards. The integrity of the BBB is compromised in many disorders of the human CNS; therapeutical strategies for several of these diseases include treatment with glucocorticoids, but the molecular basis of how glucocorticoids regulate BBB permeability is not understood. Here, we report the generation and characterization of a murine immortalized brain (cerebral) capillary endothelial (cEND) cell line which expresses the BBB marker occludin at intercellular tight junctions (TJ). Hydrocortisone at physiological concentrations induced upregulation of occludin, accompanied by a threefold enhancement of transendothelial electrical resistance to values up to 1000 Ωcm2. Insulin enhanced the glucocorticoid response. At the molecular level, hydrocortisone induces increase of occludin at protein and mRNA levels by activation of the glucocorticoid receptor (GR) and its binding to putative glucocorticoid responsive elements in the occludin promoter. At the same time, insulin potentiated the ligand‐dependent GR transactivation via induction of the GR in this in vitro system. This study thus provides insights into the molecular processes of barrier genesis, and may help to elucidate mechanisms of brain pathology at the microvascular level.
Journal of Cerebral Blood Flow and Metabolism | 2016
Hans Christian Cederberg Helms; N. Joan Abbott; Malgorzata Burek; Roméo Cecchelli; Pierre Olivier Couraud; Mária A. Deli; Carola Förster; Hans J. Galla; Ignacio A. Romero; Eric V. Shusta; Matthew J. Stebbins; Elodie Vandenhaute; Babette B. Weksler; Birger Brodin
The endothelial cells lining the brain capillaries separate the blood from the brain parenchyma. The endothelial monolayer of the brain capillaries serves both as a crucial interface for exchange of nutrients, gases, and metabolites between blood and brain, and as a barrier for neurotoxic components of plasma and xenobiotics. This “blood-brain barrier” function is a major hindrance for drug uptake into the brain parenchyma. Cell culture models, based on either primary cells or immortalized brain endothelial cell lines, have been developed, in order to facilitate in vitro studies of drug transport to the brain and studies of endothelial cell biology and pathophysiology. In this review, we aim to give an overview of established in vitro blood–brain barrier models with a focus on their validation regarding a set of well-established blood–brain barrier characteristics. As an ideal cell culture model of the blood–brain barrier is yet to be developed, we also aim to give an overview of the advantages and drawbacks of the different models described.
The Journal of Physiology | 2006
Carola Förster; Jens Waschke; Malgorzata Burek; Jörg Leers; Detlev Drenckhahn
Endothelial cells (ECs) from different vascular beds display certain common qualities, but each subtype is uniquely adapted to meet the demands of the underlying tissues. The structural peculiarities of intercellular junctions are, for instance, considered to account for the differences in permeability displayed by various vascular beds: strong occludin expression is unique to cerebral ECs and considered to account for the high electrical resistance and low paracellular permeability of brain microvessels which constitute the blood–brain barrier (BBB). The integrity of the BBB is compromised in many disorders of the human CNS; therapeutic strategies include treatment with glucocorticoids (GCs), which improve barrier properties of the BBB. In contrast, positive effects of GCs on peripheral vascular permeability could not be demonstrated clearly, while side‐effects of prolonged GC treatment are considerable. In an effort to elucidate this difference, we analysed the expression of occludin and the glucocorticoid receptor (GR) in BBB and non‐BBB (myocardium) endothelial cells. Our results demonstrate complete GR downregulation by GCs in murine non‐BBB endothelial cells in vivo, whereas GC administration led to nuclear concentration of GRs in BBB endothelium. In correlation with these in vivo data, the use of cerebral and myocardial endothelial cell lines proved GR downregulation in non‐BBB cells in vitro in response to GC treatment. Divergent transactivating activity of GRs in the BBB and non‐BBB endothelial cellular context could be demonstrated after transfection of endothelial cells with a model GC‐responsive test promoter plasmid in the presence and absence of dexamethasone. Our results thus suggest differential signalling mechanisms involved in endothelial barrier regulation, arguing for the development of tissue‐specific drugs for therapeutic applications.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2010
Malgorzata Burek; Paula Anahi Arias-Loza; Norbert Roewer; Carola Förster
Objective—Estrogens have multiple effects on vascular physiology and function. In the present study, we look for direct estrogen target genes within junctional proteins. Methods and Results—We use murine endothelial cell lines of brain and heart origin, which express both subtypes of estrogen receptor, ER&agr; and ER&bgr;. Treatment of these cells with 17&bgr;-estradiol (E2) led to an increase in transendothelial electric resistance and a most prominent upregulation of the tight junction protein claudin-5 expression. A significant increase of claudin-5 promoter activity, mRNA, and protein levels was detected in cells from both vascular beds. In protein lysates and in immunoreactions on brain sections from ovariectomized E2-treated mice, we noticed an increase in claudin-5 protein and mRNA content. Treatment of cells with a specific ER&bgr; agonist, diarylpropionitrile, revealed the same effect as E2 stimulation. Moreover, we detected significantly lower claudin-5 mRNA and protein content in ER&bgr; knockout mice. Conclusions—We describe claudin-5 as a novel estrogen target in vascular endothelium and show in vivo (brain endothelium) and in vitro (brain and heart endothelium) effects of estrogen on claudin-5 levels. The estrogen-induced increase in junctional protein levels may lead to an improvement in vascular structural integrity and barrier function of vascular endothelium.
Stroke | 2011
Christoph Kleinschnitz; Kinga G. Blecharz; Timo Kahles; Tobias Schwarz; Peter Kraft; Kerstin Göbel; Sven G. Meuth; Malgorzata Burek; Thomas Thum; Guido Stoll; Carola Förster
Background and Purpose— Glucocorticoids potently stabilize the blood–brain barrier and ameliorate tissue edema in certain neoplastic and inflammatory disorders of the central nervous system, but they are largely ineffective in patients with acute ischemic stroke. The reasons for this discrepancy are unresolved. Methods— To address the molecular basis for the paradox unresponsiveness of the blood–brain barrier during hypoxia, we used murine brain microvascular endothelial cells exposed to O2/glucose deprivation as an in vitro model. In an in vivo approach, mice were subjected to transient middle cerebral artery occlusion to induce brain infarctions. Blood–brain barrier damage and edema formation were chosen as surrogate markers of glucocorticoid sensitivity in the presence or absence of proteasome inhibitors. Results— O2/glucose deprivation reduced the expression of tight junction proteins and transendothelial resistance in murine brain microvascular endothelial cells in vitro. Dexamethasone treatment failed to reverse these effects during hypoxia. Proteasome-dependent degradation of the glucocorticoid receptor impaired glucocorticoid receptor transactivation thereby preventing physiological glucocorticoid activity. Inhibition of the proteasome, however, fully restored the blood–brain barrier stabilizing properties of glucocorticoid during O2/glucose deprivation. Importantly, mice treated with the proteasome inhibitor Bortezomib in combination with steroids several hours after stroke developed significantly less brain edema and functional deficits, whereas respective monotherapies were ineffective. Conclusions— We for the first time show that inhibition of the proteasome can overcome glucocorticoid resistance at the hypoxic blood–brain barrier. Hence, combined treatment strategies may help to combat stroke-induced brain edema formation in the future and prevent secondary clinical deterioration.
Molecular and Cellular Endocrinology | 2009
Malgorzata Burek; Carola Förster
Claudin-5, an integral tight junction protein component, plays a critical role in permeability of the endothelial cell barrier. Recently, we have shown that claudin-5 protein is down-regulated by the proinflammatory cytokine TNF alpha and its levels restored by dexamethasone treatment. In order to investigate the regulation of claudin-5 at the transcriptional level, we have cloned the murine claudin-5 promoter. The claudin-5 promoter sequence (1131 bp) showed no consensus TATA-box. We identified putative transcription factor binding sites, including six full and two half sites degenerated glucocorticoid-response elements (GREs), two NFkappaB, three Sp1, one Sp2, one Ap2, as well as three E-boxes. Serially deleted promoter constructs showed high basal activity. TNF alpha significantly reduced the promoter activity and mRNA levels of claudin-5 in brain cEND and myocardial MyEND endothelial cells. Dexamethasone treatment led to a significant increase of the murine claudin-5 promoter activity and mRNA levels in cEND cells. However, no claudin-5 induction could be observed in MyEND cells in response to dexamethasone. Our studies suggest tissue-specific regulation of the claudin-5 gene via glucocorticoids and a high vulnerability of claudin-5 to TNF alpha. This could be an important mechanism in diseases accompanied by the release of proinflammatory cytokines, for example in patients with chronic heart failure or multiple sclerosis.
Journal of Visualized Experiments | 2012
Malgorzata Burek; Ellaine Salvador; Carola Förster
Epithelial and endothelial cells (EC) are building paracellular barriers which protect the tissue from the external and internal environment. The blood-brain barrier (BBB) consisting of EC, astrocyte end-feet, pericytes and the basal membrane is responsible for the protection and homeostasis of the brain parenchyma. In vitro BBB models are common tools to study the structure and function of the BBB at the cellular level. A considerable number of different in vitro BBB models have been established for research in different laboratories to date. Usually, the cells are obtained from bovine, porcine, rat or mouse brain tissue (discussed in detail in the review by Wilhelm et al. 1). Human tissue samples are available only in a restricted number of laboratories or companies 2,3. While primary cell preparations are time consuming and the EC cultures can differ from batch to batch, the establishment of immortalized EC lines is the focus of scientific interest. Here, we present a method for establishing an immortalized brain microvascular EC line from neonatal mouse brain. We describe the procedure step-by-step listing the reagents and solutions used. The method established by our lab allows the isolation of a homogenous immortalized endothelial cell line within four to five weeks. The brain microvascular endothelial cell lines termed cEND 4 (from cerebral cortex) and cerebEND 5 (from cerebellar cortex), were isolated according to this procedure in the Förster laboratory and have been effectively used for explanation of different physiological and pathological processes at the BBB. Using cEND and cerebEND we have demonstrated that these cells respond to glucocorticoid- 4,6-9 and estrogen-treatment 10 as well as to pro-infammatory mediators, such as TNFalpha 5,8. Moreover, we have studied the pathology of multiple sclerosis 11 and hypoxia 12,13 on the EC-level. The cEND and cerebEND lines can be considered as a good tool for studying the structure and function of the BBB, cellular responses of ECs to different stimuli or interaction of the EC with lymphocytes or cancer cells.
Molecular and Cellular Endocrinology | 2014
Malgorzata Burek; Katrin Steinberg; Carola Förster
Claudin-5 is an integral membrane protein and a critical component of endothelial tight junctions that control paracellular permeability. Claudin-5 is expressed at high levels in the brain vascular endothelium. Estrogens have multiple effects on vascular physiology and function. The biological actions of estrogens are mediated by two different estrogen receptor (ER) subtypes, ER alpha and ER beta. Estrogens have beneficial effects in several vascular disorders. Recently we have cloned and characterized a murine claudin-5 promoter and demonstrated 17beta-estradiol (E2)-mediated regulation of claudin-5 in brain and heart microvascular endothelium on promoter, mRNA and protein level. Sequence analysis revealed a putative estrogen response element (ERE) and a putative Sp1 transcription factor binding site in the claudin-5 promoter. The aim of the present study was to further characterize the estrogen-responsive elements of claudin-5 promoter. First, we introduced point mutations in ERE or Sp1 site in -500/+111 or in Sp1 site of -268/+111 claudin-5 promoter construct, respectively. Basal and E2-mediated transcriptional activation of mutated constructs was abrogated in the luciferase reporter gene assay. Next, we examined whether estrogen receptor subtypes bind to the claudin-5 promoter region. For this purpose we performed chromatin immunoprecipitation assays using anti-estrogen receptor antibodies and cellular lysates of E2-treated endothelial cells followed by quantitative PCR analysis. We show enrichment of claudin-5 promoter fragments containing the ERE- and Sp1-binding site in immunoprecipitates after E2 treatment. Finally, in a gel mobility shift assay, we demonstrated DNA-protein interaction of both ER subtypes at ERE. In summary, this study provides evidence that both a non-consensus ERE and a Sp1 site in the claudin-5 promoter are functional and necessary for the basal and E2-mediated activation of the promoter.
Neuroscience Letters | 2012
Winfried Neuhaus; Malgorzata Burek; Cholpon S. Djuzenova; Serge C. Thal; Hermann Koepsell; Norbert Roewer; Carola Förster
During stroke the blood-brain barrier (BBB) is damaged which can result in vasogenic brain edema and inflammation. The reduced blood supply leads to decreased delivery of oxygen and glucose to affected areas of the brain. Oxygen and glucose deprivation (OGD) can cause upregulation of glucose uptake of brain endothelial cells. In this letter, we investigated the influence of MK801, a non-competitive inhibitor of the NMDA-receptor, on the regulation of the glucose uptake and of the main glucose transporters glut1 and sglt1 in murine BBB cell line cerebEND during OGD. mRNA expression of glut1 was upregulated 68.7-fold after 6h OGD, which was significantly reduced by 10μM MK801 to 28.9-fold. Sglt1 mRNA expression decreased during OGD which was further reduced by MK801. Glucose uptake was significantly increased up to 907% after 6h OGD and was still higher (210%) after the 20h reoxygenation phase compared to normoxia. Ten micromolar MK801 during OGD was able to reduce upregulated glucose uptake after OGD and reoxygenation significantly. Presence of several NMDAR subunits was proven on the mRNA level in cerebEND cells. Furthermore, it was shown that NMDAR subunit NR1 was upregulated during OGD and that this was inhibitable by MK801. In conclusion, the addition of MK801 during the OGD phase reduced significantly the glucose uptake after the subsequent reoxygenation phase in brain endothelial cells.