Malgorzata Prajer
Polish Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malgorzata Prajer.
PLOS Genetics | 2012
Olivier Arnaiz; Nathalie Mathy; Céline Baudry; Sophie Malinsky; Jean-Marc Aury; Cyril Denby Wilkes; Olivier Garnier; Karine Labadie; Benjamin E. Lauderdale; Anne Le Mouël; Antoine Marmignon; Mariusz Nowacki; Julie Poulain; Malgorzata Prajer; Patrick Wincker; Eric Meyer; Sandra Duharcourt; Laurent Duret; Mireille Bétermier; Linda Sperling
Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.
Nature | 2014
Deepankar Pratap Singh; Baptiste Saudemont; Gérard Guglielmi; Olivier Arnaiz; Jean-François Gout; Malgorzata Prajer; Alexey Potekhin; E. Przybos; Anne Aubusson-Fleury; Simran Bhullar; Khaled Bouhouche; Maoussi Lhuillier-Akakpo; Véronique Tanty; Corinne Blugeon; Adriana Alberti; Karine Labadie; Jean-Marc Aury; Linda Sperling; Sandra Duharcourt; Eric Meyer
In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.
Systematics and Biodiversity | 2007
E. Przybos; Malgorzata Prajer; Magdalena Greczek-Stachura; Bogumiła Skotarczak; Agnieszka Maciejewska; Sebastian Tarcz
Abstract The Paramecium aurelia complex includes 15 species (sibling species) and is characterised by inbreeding (to varying degrees in different species), causing an increase in intra‐specific differentiation. Investigations into inter‐ and intraspecific differentiation of strains originating from remote habitats within species of the complex were carried out by classical inter‐strain crosses and molecular analyses (RAPD‐PCR fingerprints, ARDRA riboprints, RFLP‐PCR analysis). RAPD analysis showed that all species in the complex possessed characteristic band patterns and the majority were also polymorphic intra‐specifically. A correlation exists between the degree of inbreeding characteristic for a species with differentiation of DNAgenotypes revealed by RAPD analysis within species, where inbreeders showed substantial variability of band patterns and moderate inbreeders were highly similar. RFLP analysis (a 480bp fragment of the gene coding the Hsp 70 protein) with the application of restriction enzyme TruII distinguished among species, while digestion with restriction enzyme AluI distinguished groups of species (clusters) and both enzymes revealed intra‐species polymorphism within P. dodecaurelia. ARDRA riboprinting (using a fragment of SSU‐LSU rDNA, about 2400 bp) with restriction enzymes HhaI, AluI, HinfI, TaqI distinguished groups of species with different band patterns. The majority of enzymes also demonstrated intra‐specific differentiation within P. dodecaurelia. TaqI also revealed intraspecific differences in P. biaurelia and P. tetraurelia. All species in the P. aurelia complex showed a high percentage of surviving hybrid clones in F 1 obtained by conjugation and F2 obtained by autogamy in inter‐strain crosses. A low percentage was observed only in F2 inter‐strain hybrids of P. tredecaurelia, however no cytological changes in the nuclear apparatuses were detected and similar band patterns existed in the studied strains. Future studies, including sequencing of rDNA fragments, may disclose deeper relationships of the species.
Folia Biologica | 2005
Ewa Przyboś; Malgorzata Prajer; Magdalena Greczek-Stachura; Sergei I. Fokin; Maria Rautian; Alexey Potekhin
New stands of rare species of the Paramecium aurelia complex were found in Europe, i.e. P. pentaurelia and P. dodecaurelia in Italy and P. septaurelia in Germany. The species were identified by mating reactions with the standard strains of each species. Their relationships with some other known strains of particular species were studied by classical strain crosses (survival in F1 and F2 generations) and by comparison of RAPD-PCR fingerprints. The presence of the cosmopolitan species P. tetraurelia in Italy was also recorded.
Folia Biologica | 2005
Ewa Przyboś; Malgorzata Prajer; Magdalena Greczek-Stachura
RAPD-PCR analysis showed that species of the Paramecium aurelia complex possessed characteristic band patterns and that the majority were also polymorphic intra-specifically. A comparison of band patterns was performed for some inter-strain hybrids within P. primaurelia, P. tetraurelia, P. pentaurelia, P. septaurelia, P. octaurelia, P. decaurelia, P. dodecaurelia, P. tredecaurelia, and P. quadecaurelia to band patterns characteristic for the parental strains. The investigations, however, did not reveal a close correlation between the degree of inbreeding characteristic for the species and similarity of genotypes. A low similarity of hybrid and parental band patterns was observed in P. octaurelia, P. dodecaurelia, P. quadecaurelia and also P. primaurelia. A high similarity of band patterns of hybrid and parental strains was found in P. tetraurelia, P. septaurelia, P. decaurelia, and P. tredecaurelia.
Systematics and Biodiversity | 2012
Ewa Przyboś; Sebastian Tarcz; Malgorzata Prajer; Marta Surmacz; Maria Rautian; Natalia Sawka
Species of the Paramecium aurelia complex show different levels of intraspecific polymorphism, with P. dodecaurelia revealing a high level of intraspecific variation. Paramecium dodecaurelia strains originating from distant localities in the Palaearctic, North America (USA), and Oceania (Hawaii) were studied in terms of intraspecific differentiation and the degree of speciation. Sequences of genes encoding the ITS1–5.8S-ITS2–5’ end of LSU rDNA (1063–1097 bp) and cytochrome c oxidase subunit I mtDNA (638–644 bp) were obtained from 33 strains of P. dodecaurelia, other P. aurelia species, and another species of the genus Paramecium, with Tetrahymena sp. used as an outgroup. In phylograms, the majority of P. dodecaurelia strains from the Palaearctic appear in one cluster, while strains from Japan, Hawaii and the USA are grouped in another cluster, together with some strains from Italy and representatives of the P. aurelia species complex. Our results tend to support the hypothesis that P. dodecaurelia seems to be a polyphyletic species with several haplotypes similar to or even shared with other members of the P. aurelia species complex. However, it is still an open question whether the revealed intraspecific differences within P. dodecaurelia are the result of ongoing speciation, or perhaps they just indicate genetic differentiation within a species that has a wide geographic distribution.
Journal of Eukaryotic Microbiology | 2001
Francine Iftode; Malgorzata Prajer; Joseph Frankel
Abstract Homopolar doublets with twofold rotational symmetry were generated in Paramecium tetraurelia and in P. undecaurelia by electrofusion or by arrested conjugation. These doublets underwent a complex cortical reorganization over time, which led to their reversion to singlets. This reorganization involved a reduction in number of ciliary rows, a progressive inactivation and loss of one oral meridian, and a reduction and eventual disappearance of one cortical surface (semicell) situated between the two oral meridians. The intermediate steps of this reorganization included some processes that resemble those previously described in regulating doublets of other ciliates, and others that are peculiar to members of the “P. aurelia” species-group and some of its close relatives. The former included a disappearance of one cortical landmark (a contractile vacuole meridian) and transient appearance of another (a third cytoproct) within the narrower semicell. The latter included a reorganization of the paratene zone and the associated invariant (non-duplicating) region to occupy the entire narrower semicell and a redistribution of zones of most active basal-body proliferation within the opposite, wider semicell. The final steps of reorganization involved anterior displacement, invagination, and resorption of one of the two oral apparatuses and eventual disappearance of the associated oral meridian. An oral meridian deprived of its oral apparatus, either by spontaneous resorption or microsurgical removal, could persist for some time in “incomplete doublets” before regulating to the singlet condition. The phylogenetically widespread events encountered in the regulation of doublets to singlets suggest that Paramecium shares some of the global regulatory properties that are likely to be ancestral in ciliates. The more specific events are probably associated with the complex cytoskeletal architecture of this organism and with the frequent occurrence of autogamy that was described in the preceding study (Prajer et al. 1999).
Acta Protozoologica | 2006
Sebastian Tarcz; E. Przybos; Malgorzata Prajer; Magdalena Greczek-Stachura
Protist | 2012
Ewa Przyboś; Sebastian Tarcz; Alexey Potekhin; Maria Rautian; Malgorzata Prajer
Folia Biologica | 2008
Malgorzata Prajer