Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Olivier Arnaiz is active.

Publication


Featured researches published by Olivier Arnaiz.


Nature | 2006

Global trends of whole-genome duplications revealed by the ciliate Paramecium tetraurelia

Jean-Marc Aury; Olivier Jaillon; Laurent Duret; Benjamin Noel; Claire Jubin; Betina M. Porcel; Béatrice Segurens; Vincent Daubin; Véronique Anthouard; Nathalie Aiach; Olivier Arnaiz; Alain Billaut; Janine Beisson; Isabelle Blanc; Khaled Bouhouche; Francisco Câmara; Sandra Duharcourt; Roderic Guigó; Delphine Gogendeau; Michael Katinka; Anne-Marie Keller; Roland Kissmehl; Catherine Klotz; Anne Le Mouël; Gersende Lepère; Sophie Malinsky; Mariusz Nowacki; Jacek K. Nowak; Helmut Plattner; Julie Poulain

The duplication of entire genomes has long been recognized as having great potential for evolutionary novelties, but the mechanisms underlying their resolution through gene loss are poorly understood. Here we show that in the unicellular eukaryote Paramecium tetraurelia, a ciliate, most of the nearly 40,000 genes arose through at least three successive whole-genome duplications. Phylogenetic analysis indicates that the most recent duplication coincides with an explosion of speciation events that gave rise to the P. aurelia complex of 15 sibling species. We observed that gene loss occurs over a long timescale, not as an initial massive event. Genes from the same metabolic pathway or protein complex have common patterns of gene loss, and highly expressed genes are over-retained after all duplications. The conclusion of this analysis is that many genes are maintained after whole-genome duplication not because of functional innovation but because of gene dosage constraints.


Database | 2011

BioMart Central Portal: an open database network for the biological community

Jonathan M. Guberman; J. Ai; Olivier Arnaiz; Joachim Baran; Andrew Blake; Richard Baldock; Claude Chelala; David Croft; Anthony Cros; Rosalind J. Cutts; A. Di Génova; Simon A. Forbes; T. Fujisawa; Emanuela Gadaleta; David Goodstein; Gunes Gundem; Bernard Haggarty; Syed Haider; Matthew Hall; Todd W. Harris; Robin Haw; Songnian Hu; Simon J. Hubbard; Jack Hsu; Vivek Iyer; Philip Jones; Toshiaki Katayama; Rhoda Kinsella; Lei Kong; Daniel Lawson

BioMart Central Portal is a first of its kind, community-driven effort to provide unified access to dozens of biological databases spanning genomics, proteomics, model organisms, cancer data, ontology information and more. Anybody can contribute an independently maintained resource to the Central Portal, allowing it to be exposed to and shared with the research community, and linking it with the other resources in the portal. Users can take advantage of the common interface to quickly utilize different sources without learning a new system for each. The system also simplifies cross-database searches that might otherwise require several complicated steps. Several integrated tools streamline common tasks, such as converting between ID formats and retrieving sequences. The combination of a wide variety of databases, an easy-to-use interface, robust programmatic access and the array of tools make Central Portal a one-stop shop for biological data querying. Here, we describe the structure of Central Portal and show example queries to demonstrate its capabilities. Database URL: http://central.biomart.org.


PLOS Genetics | 2012

The Paramecium Germline Genome Provides a Niche for Intragenic Parasitic DNA: Evolutionary Dynamics of Internal Eliminated Sequences

Olivier Arnaiz; Nathalie Mathy; Céline Baudry; Sophie Malinsky; Jean-Marc Aury; Cyril Denby Wilkes; Olivier Garnier; Karine Labadie; Benjamin E. Lauderdale; Anne Le Mouël; Antoine Marmignon; Mariusz Nowacki; Julie Poulain; Malgorzata Prajer; Patrick Wincker; Eric Meyer; Sandra Duharcourt; Laurent Duret; Mireille Bétermier; Linda Sperling

Insertions of parasitic DNA within coding sequences are usually deleterious and are generally counter-selected during evolution. Thanks to nuclear dimorphism, ciliates provide unique models to study the fate of such insertions. Their germline genome undergoes extensive rearrangements during development of a new somatic macronucleus from the germline micronucleus following sexual events. In Paramecium, these rearrangements include precise excision of unique-copy Internal Eliminated Sequences (IES) from the somatic DNA, requiring the activity of a domesticated piggyBac transposase, PiggyMac. We have sequenced Paramecium tetraurelia germline DNA, establishing a genome-wide catalogue of ∼45,000 IESs, in order to gain insight into their evolutionary origin and excision mechanism. We obtained direct evidence that PiggyMac is required for excision of all IESs. Homology with known P. tetraurelia Tc1/mariner transposons, described here, indicates that at least a fraction of IESs derive from these elements. Most IES insertions occurred before a recent whole-genome duplication that preceded diversification of the P. aurelia species complex, but IES invasion of the Paramecium genome appears to be an ongoing process. Once inserted, IESs decay rapidly by accumulation of deletions and point substitutions. Over 90% of the IESs are shorter than 150 bp and present a remarkable size distribution with a ∼10 bp periodicity, corresponding to the helical repeat of double-stranded DNA and suggesting DNA loop formation during assembly of a transpososome-like excision complex. IESs are equally frequent within and between coding sequences; however, excision is not 100% efficient and there is selective pressure against IES insertions, in particular within highly expressed genes. We discuss the possibility that ancient domestication of a piggyBac transposase favored subsequent propagation of transposons throughout the germline by allowing insertions in coding sequences, a fraction of the genome in which parasitic DNA is not usually tolerated.


Nucleic Acids Research | 2011

ParameciumDB in 2011: new tools and new data for functional and comparative genomics of the model ciliate Paramecium tetraurelia

Olivier Arnaiz; Linda Sperling

ParameciumDB is a community model organism database built with the GMOD toolkit to integrate the genome and biology of the ciliate Paramecium tetraurelia. Over the last four years, post-genomic data from proteome and transcriptome studies has been incorporated along with predicted orthologs in 33 species, annotations from the community and publications from the scientific literature. Available tools include BioMart for complex queries, GBrowse2 for genome browsing, the Apollo genome editor for expert curation of gene models, a Blast server, a motif finder, and a wiki for protocols, nomenclature guidelines and other documentation. In-house tools have been developed for ontology browsing and evaluation of off-target RNAi matches. Now ready for next-generation deep sequencing data and the genomes of other Paramecium species, this open-access resource is available at http://paramecium.cgm.cnrs-gif.fr.


Nature | 2014

Genome-defence small RNAs exapted for epigenetic mating-type inheritance

Deepankar Pratap Singh; Baptiste Saudemont; Gérard Guglielmi; Olivier Arnaiz; Jean-François Gout; Malgorzata Prajer; Alexey Potekhin; E. Przybos; Anne Aubusson-Fleury; Simran Bhullar; Khaled Bouhouche; Maoussi Lhuillier-Akakpo; Véronique Tanty; Corinne Blugeon; Adriana Alberti; Karine Labadie; Jean-Marc Aury; Linda Sperling; Sandra Duharcourt; Eric Meyer

In the ciliate Paramecium, transposable elements and their single-copy remnants are deleted during the development of somatic macronuclei from germline micronuclei, at each sexual generation. Deletions are targeted by scnRNAs, small RNAs produced from the germ line during meiosis that first scan the maternal macronuclear genome to identify missing sequences, and then allow the zygotic macronucleus to reproduce the same deletions. Here we show that this process accounts for the maternal inheritance of mating types in Paramecium tetraurelia, a long-standing problem in epigenetics. Mating type E depends on expression of the transmembrane protein mtA, and the default type O is determined during development by scnRNA-dependent excision of the mtA promoter. In the sibling species Paramecium septaurelia, mating type O is determined by coding-sequence deletions in a different gene, mtB, which is specifically required for mtA expression. These independently evolved mechanisms suggest frequent exaptation of the scnRNA pathway to regulate cellular genes and mediate transgenerational epigenetic inheritance of essential phenotypic polymorphisms.


Genome Research | 2008

Analysis of sequence variability in the macronuclear DNA of Paramecium tetraurelia: A somatic view of the germline

Laurent Duret; Jean Cohen; Claire Jubin; Philippe Dessen; Jean-François Gout; Sylvain Mousset; Jean-Marc Aury; Olivier Jaillon; Benjamin Noel; Olivier Arnaiz; Mireille Bétermier; Patrick Wincker; Eric Meyer; Linda Sperling

Ciliates are the only unicellular eukaryotes known to separate germinal and somatic functions. Diploid but silent micronuclei transmit the genetic information to the next sexual generation. Polyploid macronuclei express the genetic information from a streamlined version of the genome but are replaced at each sexual generation. The macronuclear genome of Paramecium tetraurelia was recently sequenced by a shotgun approach, providing access to the gene repertoire. The 72-Mb assembly represents a consensus sequence for the somatic DNA, which is produced after sexual events by reproducible rearrangements of the zygotic genome involving elimination of repeated sequences, precise excision of unique-copy internal eliminated sequences (IES), and amplification of the cellular genes to high copy number. We report use of the shotgun sequencing data (>10(6) reads representing 13 x coverage of a completely homozygous clone) to evaluate variability in the somatic DNA produced by these developmental genome rearrangements. Although DNA amplification appears uniform, both of the DNA elimination processes produce sequence heterogeneity. The variability that arises from IES excision allowed identification of hundreds of putative new IESs, compared to 42 that were previously known, and revealed cases of erroneous excision of segments of coding sequences. We demonstrate that IESs in coding regions are under selective pressure to introduce premature termination of translation in case of excision failure.


BMC Genomics | 2010

Gene expression in a paleopolyploid: a transcriptome resource for the ciliate Paramecium tetraurelia

Olivier Arnaiz; Jean-François Gout; Mireille Bétermier; Khaled Bouhouche; Jean Cohen; Laurent Duret; Aurélie Kapusta; Eric Meyer; Linda Sperling

BackgroundThe genome of Paramecium tetraurelia, a unicellular model that belongs to the ciliate phylum, has been shaped by at least 3 successive whole genome duplications (WGD). These dramatic events, which have also been documented in plants, animals and fungi, are resolved over evolutionary time by the loss of one duplicate for the majority of genes. Thanks to a low rate of large scale genome rearrangement in Paramecium, an unprecedented large number of gene duplicates of different ages have been identified, making this organism an outstanding model to investigate the evolutionary consequences of polyploidization. The most recent WGD, with 51% of pre-duplication genes still in 2 copies, provides a snapshot of a phase of rapid gene loss that is not accessible in more ancient polyploids such as yeast.ResultsWe designed a custom oligonucleotide microarray platform for P. tetraurelia genome-wide expression profiling and used the platform to measure gene expression during 1) the sexual cycle of autogamy, 2) growth of new cilia in response to deciliation and 3) biogenesis of secretory granules after massive exocytosis. Genes that are differentially expressed during these time course experiments have expression patterns consistent with a very low rate of subfunctionalization (partition of ancestral functions between duplicated genes) in particular since the most recent polyploidization event.ConclusionsA public transcriptome resource is now available for Parameciumtetraurelia. The resource has been integrated into the ParameciumDB model organism database, providing searchable access to the data. The microarray platform, freely available through NimbleGen Systems, provides a robust, cost-effective approach for genome-wide expression profiling in P. tetraurelia. The expression data support previous studies showing that at short evolutionary times after a whole genome duplication, gene dosage balance constraints and not functional change are the major determinants of gene retention.


Journal of Cell Science | 2008

Functional diversification of centrins and cell morphological complexity

Delphine Gogendeau; Catherine Klotz; Olivier Arnaiz; Agata Malinowska; Michal Dadlez; Nicole Garreau de Loubresse; Françoise Ruiz; Janine Beisson

In addition to their key role in the duplication of microtubule organising centres (MTOCs), centrins are major constituents of diverse MTOC-associated contractile arrays. A centrin partner, Sfi1p, has been characterised in yeast as a large protein carrying multiple centrin-binding sites, suggesting a model for centrin-mediated Ca2+-induced contractility and for the duplication of MTOCs. In vivo validation of this model has been obtained in Paramecium, which possesses an extended contractile array – the infraciliary lattice (ICL) – essentially composed of centrins and a huge Sfi1p-like protein, PtCenBP1p, which is essential for ICL assembly and contractility. The high molecular diversity revealed here by the proteomic analysis of the ICL, including ten subfamilies of centrins and two subfamilies of Sf1p-like proteins, led us to address the question of the functional redundancy, either between the centrin-binding proteins or between the centrin subfamilies. We show that all are essential for ICL biogenesis. The two centrin-binding protein subfamilies and nine of the centrin subfamilies are ICL specific and play a role in its molecular and supramolecular architecture. The tenth and most conserved centrin subfamily is present at three cortical locations (ICL, basal bodies and contractile vacuole pores) and might play a role in coordinating duplication and positioning of cortical organelles.


Genome Biology | 2008

GMODWeb: a web framework for the generic model organism database

Brian D. O'Connor; Allen Day; Scott Cain; Olivier Arnaiz; Linda Sperling; Lincoln Stein

The Generic Model Organism Database (GMOD) initiative provides species-agnostic data models and software tools for representing curated model organism data. Here we describe GMODWeb, a GMOD project designed to speed the development of model organism database (MOD) websites. Sites created with GMODWeb provide integration with other GMOD tools and allow users to browse and search through a variety of data types. GMODWeb was built using the open source Turnkey web framework and is available from http://turnkey.sourceforge.net.


PLOS Genetics | 2014

Ku-Mediated Coupling of DNA Cleavage and Repair during Programmed Genome Rearrangements in the Ciliate Paramecium tetraurelia

Antoine Marmignon; Julien Bischerour; Aude Silve; Clémentine Fojcik; Emeline Dubois; Olivier Arnaiz; Aurélie Kapusta; Sophie Malinsky; Mireille Bétermier

During somatic differentiation, physiological DNA double-strand breaks (DSB) can drive programmed genome rearrangements (PGR), during which DSB repair pathways are mobilized to safeguard genome integrity. Because of their unique nuclear dimorphism, ciliates are powerful unicellular eukaryotic models to study the mechanisms involved in PGR. At each sexual cycle, the germline nucleus is transmitted to the progeny, but the somatic nucleus, essential for gene expression, is destroyed and a new somatic nucleus differentiates from a copy of the germline nucleus. In Paramecium tetraurelia, the development of the somatic nucleus involves massive PGR, including the precise elimination of at least 45,000 germline sequences (Internal Eliminated Sequences, IES). IES excision proceeds through a cut-and-close mechanism: a domesticated transposase, PiggyMac, is essential for DNA cleavage, and DSB repair at excision sites involves the Ligase IV, a specific component of the non-homologous end-joining (NHEJ) pathway. At the genome-wide level, a huge number of programmed DSBs must be repaired during this process to allow the assembly of functional somatic chromosomes. To understand how DNA cleavage and DSB repair are coordinated during PGR, we have focused on Ku, the earliest actor of NHEJ-mediated repair. Two Ku70 and three Ku80 paralogs are encoded in the genome of P. tetraurelia: Ku70a and Ku80c are produced during sexual processes and localize specifically in the developing new somatic nucleus. Using RNA interference, we show that the development-specific Ku70/Ku80c heterodimer is essential for the recovery of a functional somatic nucleus. Strikingly, at the molecular level, PiggyMac-dependent DNA cleavage is abolished at IES boundaries in cells depleted for Ku80c, resulting in IES retention in the somatic genome. PiggyMac and Ku70a/Ku80c co-purify as a complex when overproduced in a heterologous system. We conclude that Ku has been integrated in the Paramecium DNA cleavage factory, enabling tight coupling between DSB introduction and repair during PGR.

Collaboration


Dive into the Olivier Arnaiz's collaboration.

Top Co-Authors

Avatar

Linda Sperling

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Meyer

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cyril Denby Wilkes

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jacek K. Nowak

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Khaled Bouhouche

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sophie Malinsky

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Anne Le Mouël

École Normale Supérieure

View shared research outputs
Researchain Logo
Decentralizing Knowledge