Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malgorzata S. Martin-Gronert is active.

Publication


Featured researches published by Malgorzata S. Martin-Gronert.


Journal of Hepatology | 2010

Maternal obesity during pregnancy and lactation programs the development of offspring non-alcoholic fatty liver disease in mice.

Jude A. Oben; Angelina Mouralidarane; Anne-Maj Samuelsson; Phillippa Matthews; Maelle Morgan; Chad McKee; Junpei Soeda; Denise S. Fernandez-Twinn; Malgorzata S. Martin-Gronert; Susan E. Ozanne; Barbara Sigala; Marco Novelli; Lucilla Poston; Paul D. Taylor

BACKGROUND & AIMS Obesity induced, non-alcoholic fatty liver disease (NAFLD), is now the major cause in affluent countries, of the spectrum of steatosis-to-cirrhosis. Obesity and NAFLD rates in reproductive age women, and adolescents, are rising worldwide. Our hypothesis was that maternal obesity and lactation transmit to the offspring a pre-disposition to dysmetabolism, obesity and NAFLD. METHODS Female mice were fed standard or obesogenic chow, before, throughout pregnancy, and during lactation. The critical developmental period was studied by cross-fostering offspring of lean and obese dams. Offspring were then weaned onto standard chow and studied at 3months. Read-outs included markers of metabolic dysfunction, biochemical and histological indicators of NAFLD, induction of liver fibrogenesis, and activation of pro-fibrotic pathways. Mechanisms involved in programming a dysmetabolic and NAFLD phenotype were investigated by assaying breast milk components. RESULTS Offspring of obese dams had a dysmetabolic, insulin resistant and NAFLD phenotype compared to offspring of lean dams. Offspring of lean dams that were suckled by obese dams showed an exaggerated dysmetabolic and NAFLD phenotype, with increased body weight, as well as increased levels of insulin, leptin, aspartate transaminase, interleukin-6, tumour necrosis factor-alpha, liver triglycerides, steatosis, hepatic fibrogenesis, renal norepinephrine, and liver alpha1-D plus beta1-adrenoceptors, indicative of sympathetic nervous system activation. Obese dams also had raised breast milk leptin levels compared to lean dams. CONCLUSIONS Maternal obesity programs development of a dysmetabolic and NAFLD phenotype, which is critically dependent on the early postnatal period and possibly involving alteration of hypothalamic appetite nuclei signalling by maternal breast milk and neonatal adipose tissue derived, leptin.


The FASEB Journal | 2008

Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats

Jane L. Tarry-Adkins; Malgorzata S. Martin-Gronert; Jian-Hua Chen; Roselle L. Cripps; Susan E. Ozanne

Low birth weight is associated with in creased cardiovascular disease (CVD) in humans. Detri mental effects of low birth weight are amplified by rapid catch–up growth. Conversely, slow growth during lactation reduces CVD risk. Gestational protein restriction causes low birth weight, vascular dysfunction, and accelerated aging in rats. Atherosclerotic aortic tissue has shortened telomeres, and oxidative stress accelerates telomere short ening through generation of DNA single–strand breaks (ssbs). This study tested the hypothesis that maternal diet influences aortic telomere length through changes in DNA ssbs, antioxidant capacity, and oxidative stress. We used our models of gestational protein restriction followed by rapid catch–up growth (the recuperated group) and pro tein restriction during lactation (the postnatal low–protein [PLP] group). Southern blotting revealed fewer aortic DNA ssbs and subsequently fewer short telomeres (P<0.05) in the PLP group. This result was associated with reduced (P<0.01) 8–hydroxy–2–deoxyguanosine, a marker of oxidative stress. PLP animals expressed in creased (P<0.01) manganese superoxide–dismutase, cop per–zinc superoxide–dismutase, catalase, and glutathione– reductase. Age–dependent changes in antioxidant defense enzymes indicated more protection to oxidative stress in the PLP animals;conversely, recuperated animals demon strated age–associated impairment of antioxidant de fenses. We conclude that maternal diet has a major influence on aortic telomere length. This finding may provide a mechanistic link between early growth patterns and CVD.— Tarry‐Adkins, J. L., Martin‐Gronert, M. S., Chen, J.‐H., Cripps, R. L., Ozanne, S. E. Maternal diet influences DNA damage, aortic telomere length, oxidative stress, and antioxidant defense capacity in rats. FASEB J. 22, 2037–2044 (2008)


Clinical Science | 2005

Fetal and perinatal programming of appetite

Roselle L. Cripps; Malgorzata S. Martin-Gronert; Susan E. Ozanne

There is increasing concern about the rapidly rising incidence of obesity worldwide and its impact both on mortality, morbidity and the cost of healthcare. In the last 15 years, a large volume of research has linked low birth weight to many adult diseases in humans, such as Type II diabetes, cardiovascular disease, hypertension and the metabolic syndrome. Obesity is a causal factor in all these conditions. There are epidemiological studies linking low birth weight to increased adiposity, but the timing of the insult during gestation seems crucial, as reducing maternal nutrition in late gestation and during lactation causes a reduction in later obesity. Recent studies in animal models have provided clues towards mechanisms of altered appetite regulation following alterations in fetal and neonatal growth. The outcome of these and future studies could prove clinically crucial, particularly in the debate over the benefits of breast feeding, which provides a lower plane of nutrition compared with formula feeding.


PLOS ONE | 2009

Maternal Protein Restriction Affects Postnatal Growth and the Expression of Key Proteins Involved in Lifespan Regulation in Mice

Jian-Hua Chen; Malgorzata S. Martin-Gronert; Jane L. Tarry-Adkins; Susan E. Ozanne

We previously reported that maternal protein restriction in rodents influenced the rate of growth in early life and ultimately affected longevity. Low birth weight caused by maternal protein restriction followed by catch-up growth (recuperated animals) was associated with shortened lifespan whereas protein restriction and slow growth during lactation (postnatal low protein: PLP animals) increased lifespan. We aim to explore the mechanistic basis by which these differences arise. Here we investigated effects of maternal diet on organ growth, metabolic parameters and the expression of insulin/IGF1 signalling proteins and Sirt1 in muscle of male mice at weaning. PLP mice which experienced protein restriction during lactation had lower fasting glucose (P = 0.038) and insulin levels (P = 0.046) suggesting improved insulin sensitivity. PLP mice had higher relative weights (adjusted by body weight) of brain (P = 0.0002) and thymus (P = 0.031) compared to controls suggesting that enhanced functional capacity of these two tissues is beneficial to longevity. They also had increased expression of insulin receptor substrate 1 (P = 0.021) and protein kinase C zeta (P = 0.046). Recuperated animals expressed decreased levels of many insulin signalling proteins including PI3 kinase subunits p85α (P = 0.018), p110β (P = 0.048) and protein kinase C zeta (P = 0.006) which may predispose these animals to insulin resistance. Sirt1 protein expression was reduced in recuperated offspring. These observations suggest that maternal protein restriction can affect major metabolic pathways implicated in regulation of lifespan at a young age which may explain the impact of maternal diet on longevity.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2009

Altered skeletal muscle insulin signaling and mitochondrial complex II-III linked activity in adult offspring of obese mice.

Piran Shelley; Malgorzata S. Martin-Gronert; Anthea Rowlerson; Lucilla Poston; S.J.R. Heales; Iain Hargreaves; Josie McConnell; Susan E. Ozanne; Denise S. Fernandez-Twinn

We recently reported insulin resistance in adult offspring of obese C57BL/6J mice. We have now evaluated whether parameters of skeletal muscle structure and function may play a role in insulin resistance in this model of developmental programming. Obesity was induced in female mice by feeding a highly palatable sugar and fat-rich diet for 6 wk prior to pregnancy, and during pregnancy and lactation. Offspring of obese dams were weaned onto standard laboratory chow. At 3 mo of age, skeletal muscle insulin signaling protein expression, mitochondrial electron transport chain activity (ETC), muscle fiber type, fiber density, and fiber cross-sectional area were compared with that of offspring of control dams weaned onto the chow diet. Female offspring of obese dams demonstrated decreased skeletal muscle expression of p110beta, the catalytic subunit of PI3K (P < 0.01), as well as reduced Akt phosphorylation at Serine residue 473 compared with control offspring. Male offspring of obese dams demonstrated increased skeletal muscle Akt2 and PKCzeta expression (P < 0.01; P < 0.001, respectively). A decrease in mitochondrial-linked complex II-III was observed in male offspring of obese dams (P < 0.01), which was unrelated to CoQ deficiency. This was not observed in females. There were no differences in muscle fiber density between offspring of obese dams and control offspring in either sex. Sex-related alterations in key insulin-signaling proteins and in mitochondrial ETC may contribute to a state of insulin resistance in offspring of obese mice.


PLOS ONE | 2008

Altered PI3-Kinase/Akt Signalling in Skeletal Muscle of Young Men with Low Birth Weight

Christine B. Jensen; Malgorzata S. Martin-Gronert; Heidi Storgaard; Sten Madsbad; Allan Vaag; Susan E. Ozanne

Background Low birth weight (LBW) is associated with increased future risk of insulin resistance and type 2 diabetes mellitus. The underlying molecular mechanisms remain poorly understood. We have previously shown that young LBW men have reduced skeletal muscle expression of PI3K p85α regulatory subunit and p110β catalytic subunit, PKCζ and GLUT4 in the fasting state. The aim of this study was to determine whether insulin activation of the PI3K/Akt and MAPK signalling pathways is altered in skeletal muscle of young adult men with LBW. Methods Vastus lateralis muscle biopsies were obtained from 20 healthy 19-yr old men with BW</ = 10th percentile for gestational age (LBW) and 20 normal birth weight controls (NBW), matched for physical fitness and whole-body glucose disposal, prior to (fasting state) and following a 4-hr hyperinsulinemic euglycemic clamp (insulin stimulated state). Expression and phosphorylation of selected proteins was determined by Western blotting. Principal Findings Insulin stimulated expression of aPKCζ (p<0.001) and Akt1 (p<0.001) was decreased in muscle of LBW men when compared to insulin stimulated controls. LBW was associated with increased insulin stimulated levels of IRS1 (p<0.05), PI3K p85α (p<0.001) and p110β (p<0.05) subunits, while there was no significant change in these proteins in insulin stimulated control muscle. In addition LBW had reduced insulin stimulated phospho-Akt (Ser 473) (p<0.01), indicative of reduced Akt signalling. Insulin stimulated expression/phosphorylation of all the MAPK proteins studied [p38 MAPK, phospho-p38 MAPK (Thr180/Tyr182), phospho-ERK (Thr 202/Tyr204), JNK1, JNK2 and phospho-JNK (Thr 183/Tyr185)] was not different between groups. Conclusions We conclude that altered insulin activation of the PI3K/Akt but not the MAPK pathway precedes and may contribute to development of whole-body insulin resistance and type 2 diabetes in men with LBW.


The FASEB Journal | 2013

Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring

Lisa M. Nicholas; Leewen Rattanatray; Severence M. MacLaughlin; Susan E. Ozanne; Dave O. Kleemann; Simon K. Walker; Janna L. Morrison; Song Zhang; Beverley S. Muhlhäusler; Malgorzata S. Martin-Gronert; I. C. McMillen

Our aim was to determine the effect of exposure to maternal obesity or to maternal weight loss around conception on the programming of hepatic insulin signaling in the offspring. We used an embryo transfer model in sheep to investigate the effects of exposure to either maternal obesity or to weight loss in normal and obese mothers preceding and for 1 wk after conception on the expression of hepatic insulin‐signaling and gluconeogenic factors and key miRNAs involved in insulin signaling in the offspring. We found that exposure to maternal obesity resulted in increased hepatic miR‐29b (P<0.05), miR‐103 (P<0.01), and miR‐107 (P<0.05) expression, a decrease in IR (P<0.05), phopsho‐Akt (P<0.01), and phospho‐FoxO1 (P<0.01) abundance, and a paradoxical decrease in 11βHSD1 (P<0.05), PEPCK‐C (P<0.01), and PEPCK‐M (P<0.05) expression in lambs. These changes were ablated by a period of moderate dietary restriction imposed during the periconceptional period. Maternal dietary restriction alone also resulted in decreased abundance of a separate subset of hepatic insulin‐signaling molecules, namely, IRS1 (P<0.05), PDK1 (P<0.01), phospho‐PDK1 (P<0.05), and aPKCξ (P<0.05) and in decreased PEPCK‐C (P<0.01) and G6Pase (P<0.01) expression in the lamb. Our findings highlight the sensitivity of the epigenome to maternal nutrition around conception and the need for dietary interventions that maximize metabolic benefits and minimize metabolic costs for the next generation.—Nicholas, L. M., Rattanatray, L., MacLaughlin, S. M., Ozanne, S. E., Kleemann, D. O., Walker, S. K., Morrison, J. L., Zhang, S., Muhlhausler, B. S., Martin‐Gronert, M. S., McMillen, I. C., Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin‐signaling pathways in the offspring. FASEB J. 27, 3786–3796 (2013). www.fasebj.org


International Journal of Obesity | 2013

Catch-up growth following intra-uterine growth-restriction programmes an insulin-resistant phenotype in adipose tissue

Lindsey M. Berends; Denise S. Fernandez-Twinn; Malgorzata S. Martin-Gronert; Roselle L. Cripps; Susan E. Ozanne

Background:It is now widely accepted that the early-life nutritional environment is important in determining susceptibility to metabolic diseases. In particular, intra-uterine growth restriction followed by accelerated postnatal growth is associated with an increased risk of obesity, type-2 diabetes and other features of the metabolic syndrome. The mechanisms underlying these observations are not fully understood.Aim:Using a well-established maternal protein-restriction rodent model, our aim was to determine if exposure to mismatched nutrition in early-life programmes adipose tissue structure and function, and expression of key components of the insulin-signalling pathway.Methods:Offspring of dams fed a low-protein (8%) diet during pregnancy were suckled by control (20%)-fed dams to drive catch-up growth. This ‘recuperated’ group was compared with offspring of dams fed a 20% protein diet during pregnancy and lactation (control group). Epididymal adipose tissue from 22-day and 3-month-old control and recuperated male rats was studied using histological analysis. Expression and phosphorylation of insulin-signalling proteins and gene expression were assessed by western blotting and reverse-transcriptase PCR, respectively.Results:Recuperated offspring at both ages had larger adipocytes (P<0.001). Fasting serum glucose, insulin and leptin levels were comparable between groups but increased with age. Recuperated offspring had reduced expression of IRS-1 (P<0.01) and PI3K p110β (P<0.001) in adipose tissue. In adult recuperated rats, Akt phosphorylation (P<0.01) and protein levels of Akt-2 (P<0.01) were also reduced. Messenger RNA expression levels of these proteins were not different, indicating a post-transcriptional effect.Conclusion:Early-life nutrition programmes alterations in adipocyte cell size and impairs the protein expression of several insulin-signalling proteins through post-transcriptional mechanisms. These indices may represent early markers of insulin resistance and metabolic disease risk.


The FASEB Journal | 2013

Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress, and oxidative defense capacity in rat heart

Jane L. Tarry-Adkins; Malgorzata S. Martin-Gronert; Denise S. Fernandez-Twinn; Iain Hargreaves; Maria Z. Alfaradhi; John M. Land; Catherine Elizabeth Aiken; Susan E. Ozanne

Low birth weight and accelerated postnatal growth lead to increased risk of cardiovascular disease. We reported previously that rats exposed to a low‐protein diet in utero and postnatal catch‐up growth (recuperated) develop metabolic dysfunction and have reduced life span. Here we explored the hypothesis that cardiac oxidative and nitrosative stress leading to DNA damage and accelerated cellular aging could contribute to these phenotypes. Recuperated animals had a low birth weight (P<0.001) but caught up in weight to controls during lactation. At weaning, recuperated cardiac tissue had increased (P<0.05) protein nitrotyrosination and DNA single‐stranded breaks. This condition was preceded by increased expression of DNA damage repair molecules 8‐oxoguanine‐DNA‐glycosylase‐1, nei‐endonuclease‐VIII‐like, X‐ray‐repair‐complementing‐defective‐repair‐1, and Nthl endonuclease III‐like‐1 on d 3. These differences were maintained on d 22 and became more pronounced in the case of 8‐oxoguanine‐DNA‐glycosylase‐1 and neiendonuclease‐VIII‐like. This was accompanied by increases in xanthine oxidase (P<0.001) and NADPH oxidase (P<0.05), major sources of reactive oxygen species (ROS). The detrimental effects of increased ROS in recuperated offspring may be exaggerated at 22 d by reductions (P<0.001) in the antioxidant enzymes perox‐iredoxin‐3 and CuZn‐superoxide‐dismutase. We conclude that poor fetal nutrition followed by accelerated postnatal growth results in increased cardiac nitrosative and oxidative‐stress and DNA damage, which could contribute to age‐associated disease risk.—TarryAdkins, J. L., Martin‐Gronert, M. S., Fernandez‐Twinn, D. S., Hargreaves, I., Alfaradhi, M. Z., Land, J. M., Aiken, C. E., Ozanne, S. E. Poor maternal nutrition followed by accelerated postnatal growth leads to alterations in DNA damage and repair, oxidative and nitrosative stress and oxidative defense capacity in rat heart. FASEB J. 27, 379–390 (2013). www.fasebj.org


Clinical Science | 2009

Programming of hypothalamic neuropeptide gene expression in rats by maternal dietary protein content during pregnancy and lactation.

Roselle L. Cripps; Malgorzata S. Martin-Gronert; Zoe A. Archer; C. Nick Hales; Julian G. Mercer; Susan E. Ozanne

Epidemiological studies show a link between low birthweight and increased obesity. In contrast, slow growth during the lactation period reduces obesity risk. The present study investigates the potential underlying mechanisms of these observations. Rats were established as follows: (i) control animals [offspring of control dams fed a 20% (w/v) protein diet], (ii) recuperated animals [offspring of dams fed an isocaloric low-protein (8%, w/v) diet during pregnancy and nursed by control dams], and (iii) postnatal low protein animals (offspring of control dams nursed by low-protein-fed dams). Serum and brains were collected from fed and fasted animals at weaning. Expression of hypothalamic energy balance genes was assessed using in situ hybridization. Recuperated pups were smaller at birth, but caught up with controls by day 21 and gained more weight than controls between weaning and 12 weeks of age (P<0.05). At 21 days, they were hypoleptinaemic compared with controls in the fed state, with generally comparable hypothalamic gene expression. Postnatal low protein offspring had significantly lower body weights than controls at weaning and 12 weeks of age (P<0.001). At 21 days, they were hypoglycaemic, hypoinsulinaemic and hypoleptinaemic. Leptin receptor gene expression in the arcuate nucleus was increased in postnatal low protein animals compared with controls. Consistent with hypoleptinaemia, hypothalamic gene expression for the orexigenic neuropeptides NPY (neuropeptide Y) and AgRP (Agouti-related peptide) was increased, and that for the anorexigenic neuropeptides POMC (pro-opiomelanocortin) and CART (cocaine- and amphetamine-regulated transcript) was decreased. These results suggest that the early nutritional environment can affect the development of energy balance circuits and consequently obesity risk.

Collaboration


Dive into the Malgorzata S. Martin-Gronert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iain Hargreaves

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge