Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Iain Hargreaves is active.

Publication


Featured researches published by Iain Hargreaves.


The Lancet | 2002

Association between mitochondrial dysfunction and severity and outcome of septic shock.

David Brealey; Michael P. Brand; Iain Hargreaves; Simon Heales; John M. Land; Ryszard T. Smolenski; Nathan A. Davies; Chris E. Cooper; Mervyn Singer

BACKGROUND Sepsis-induced multiple organ failure is the major cause of mortality and morbidity in critically ill patients. However, the precise mechanisms by which this dysfunction is caused remain to be elucidated. We and others have shown raised tissue oxygen tensions in septic animals and human beings, suggesting reduced ability of the organs to use oxygen. Because ATP production by mitochondrial oxidative phosphorylation accounts for more than 90% of total oxygen consumption, we postulated that mitochondrial dysfunction results in organ failure, possibly due to nitric oxide, which is known to inhibit mitochondrial respiration in vitro and is produced in excess in sepsis. METHODS We did skeletal muscle biopsies on 28 critically ill septic patients within 24 h of admission to intensive care, and on nine control patients undergoing elective hip surgery. The biopsy samples were analysed for respiratory-chain activity (complexes I-IV), ATP concentration, reduced glutathione (an intracellular antioxidant) concentration, and nitrite/nitrate concentrations (a marker of nitric oxide production). FINDINGS Skeletal muscle ATP concentrations were significantly lower in the 12 patients with sepsis who subsequently died than in the 16 septic patients who survived (p=0.0003) and in controls (p=0.05). Complex I activity had a significant inverse correlation with norepinephrine requirements (a proxy for shock severity, p=0.0003) and nitrite/nitrate concentrations (p=0.0004), and a significant positive correlation with concentrations of reduced glutathione (p=0.006) and ATP (p=0.03). INTERPRETATION In septic patients, we found an association between nitric oxide overproduction, antioxidant depletion, mitochondrial dysfunction, and decreased ATP concentrations that relate to organ failure and eventual outcome. These data implicate bioenergetic failure as an important pathophysiological mechanism underlying multiorgan dysfunction.


Molecular and Cellular Biology | 2004

Neuroprotective Role of the Reaper-Related Serine Protease HtrA2/Omi Revealed by Targeted Deletion in Mice

L. Miguel Martins; Alastair D. Morrison; Kristina Klupsch; Valentina Fedele; Nicoleta Moisoi; Peter Teismann; Alejandro Abuin; Evelyn Grau; Martin Geppert; George P. Livi; Caretha L. Creasy; Alison Martin; Iain Hargreaves; Simon Heales; Hitoshi Okada; Sebastian Brandner; Jörg B. Schulz; Tak W. Mak; Julian Downward

ABSTRACT The serine protease HtrA2/Omi is released from the mitochondrial intermembrane space following apoptotic stimuli. Once in the cytosol, HtrA2/Omi has been implicated in promoting cell death by binding to inhibitor of apoptosis proteins (IAPs) via its amino-terminal Reaper-related motif, thus inducing caspase activity, and also in mediating caspase-independent death through its own protease activity. We report here the phenotype of mice entirely lacking expression of HtrA2/Omi due to targeted deletion of its gene, Prss25. These animals, or cells derived from them, show no evidence of reduced rates of cell death but on the contrary suffer loss of a population of neurons in the striatum, resulting in a neurodegenerative disorder with a parkinsonian phenotype that leads to death of the mice around 30 days after birth. The phenotype of these mice suggests that it is the protease function of this protein and not its IAP binding motif that is critical. This conclusion is reinforced by the finding that simultaneous deletion of the other major IAP binding protein, Smac/DIABLO, does not obviously alter the phenotype of HtrA2/Omi knockout mice or cells derived from them. Mammalian HtrA2/Omi is therefore likely to function in vivo in a manner similar to that of its bacterial homologues DegS and DegP, which are involved in protection against cell stress, and not like the proapoptotic Reaper family proteins in Drosophila melanogaster.


PLOS ONE | 2008

PINK1 Is Necessary for Long Term Survival and Mitochondrial Function in Human Dopaminergic Neurons

Alison Wood-Kaczmar; Sonia Gandhi; Zhi Yao; Andrey Y. Abramov; Erik Miljan; Gregory Keen; Lee Stanyer; Iain Hargreaves; Kristina Klupsch; Emma Deas; Julian Downward; Louise Mansfield; Parmjit S. Jat; Joanne Taylor; Simon Heales; Michael R. Duchen; David S. Latchman; Sarah J. Tabrizi; Nicholas W. Wood

Parkinsons disease (PD) is a common age-related neurodegenerative disease and it is critical to develop models which recapitulate the pathogenic process including the effect of the ageing process. Although the pathogenesis of sporadic PD is unknown, the identification of the mendelian genetic factor PINK1 has provided new mechanistic insights. In order to investigate the role of PINK1 in Parkinsons disease, we studied PINK1 loss of function in human and primary mouse neurons. Using RNAi, we created stable PINK1 knockdown in human dopaminergic neurons differentiated from foetal ventral mesencephalon stem cells, as well as in an immortalised human neuroblastoma cell line. We sought to validate our findings in primary neurons derived from a transgenic PINK1 knockout mouse. For the first time we demonstrate an age dependent neurodegenerative phenotype in human and mouse neurons. PINK1 deficiency leads to reduced long-term viability in human neurons, which die via the mitochondrial apoptosis pathway. Human neurons lacking PINK1 demonstrate features of marked oxidative stress with widespread mitochondrial dysfunction and abnormal mitochondrial morphology. We report that PINK1 plays a neuroprotective role in the mitochondria of mammalian neurons, especially against stress such as staurosporine. In addition we provide evidence that cellular compensatory mechanisms such as mitochondrial biogenesis and upregulation of lysosomal degradation pathways occur in PINK1 deficiency. The phenotypic effects of PINK1 loss-of-function described here in mammalian neurons provides mechanistic insight into the age-related degeneration of nigral dopaminergic neurons seen in PD.


Cell Metabolism | 2013

Mitochondria and Quality Control Defects in a Mouse Model of Gaucher Disease—Links to Parkinson’s Disease

Laura D. Osellame; Ahad A. Rahim; Iain Hargreaves; Matthew E. Gegg; Angela Richard-Londt; Sebastian Brandner; Simon N. Waddington; A. H. V. Schapira; Michael R. Duchen

Summary Mutations in the glucocerebrosidase (gba) gene cause Gaucher disease (GD), the most common lysosomal storage disorder, and increase susceptibility to Parkinson’s disease (PD). While the clinical and pathological features of idiopathic PD and PD related to gba (PD-GBA) mutations are very similar, cellular mechanisms underlying neurodegeneration in each are unclear. Using a mouse model of neuronopathic GD, we show that autophagic machinery and proteasomal machinery are defective in neurons and astrocytes lacking gba. Markers of neurodegeneration—p62/SQSTM1, ubiquitinated proteins, and insoluble α-synuclein—accumulate. Mitochondria were dysfunctional and fragmented, with impaired respiration, reduced respiratory chain complex activities, and a decreased potential maintained by reversal of the ATP synthase. Thus a primary lysosomal defect causes accumulation of dysfunctional mitochondria as a result of impaired autophagy and dysfunctional proteasomal pathways. These data provide conclusive evidence for mitochondrial dysfunction in GD and provide insight into the pathogenesis of PD and PD-GBA.


American Journal of Human Genetics | 2009

A Nonsense Mutation in COQ9 Causes Autosomal-Recessive Neonatal-Onset Primary Coenzyme Q10 Deficiency: A Potentially Treatable Form of Mitochondrial Disease

Andrew J. Duncan; Maria Bitner-Glindzicz; Brigitte Meunier; Harry Costello; Iain Hargreaves; Luis C. López; Michio Hirano; Catarina M. Quinzii; Michael I. Sadowski; John Hardy; Andrew Singleton; Peter Clayton; Shamima Rahman

Coenzyme Q(10) is a mobile lipophilic electron carrier located in the inner mitochondrial membrane. Defects of coenzyme Q(10) biosynthesis represent one of the few treatable mitochondrial diseases. We genotyped a patient with primary coenzyme Q(10) deficiency who presented with neonatal lactic acidosis and later developed multisytem disease including intractable seizures, global developmental delay, hypertrophic cardiomyopathy, and renal tubular dysfunction. Cultured skin fibroblasts from the patient had a coenzyme Q(10) biosynthetic rate of 11% of normal controls and accumulated an abnormal metabolite that we believe to be a biosynthetic intermediate. In view of the rarity of coenzyme Q(10) deficiency, we hypothesized that the disease-causing gene might lie in a region of ancestral homozygosity by descent. Data from an Illumina HumanHap550 array were analyzed with BeadStudio software. Sixteen regions of homozygosity >1.5 Mb were identified in the affected infant. Two of these regions included the loci of two of 16 candidate genes implicated in human coenzyme Q(10) biosynthesis. Sequence analysis demonstrated a homozygous stop mutation affecting a highly conserved residue of COQ9, leading to the truncation of 75 amino acids. Site-directed mutagenesis targeting the equivalent residue in the yeast Saccharomyces cerevisiae abolished respiratory growth.


Cell Metabolism | 2012

Fumarate Is Cardioprotective via Activation of the Nrf2 Antioxidant Pathway

Houman Ashrafian; Gabor Czibik; Mohamed Bellahcene; Dunja Aksentijevic; Anthony C. Smith; Sarah J. Mitchell; Michael S. Dodd; Jennifer A. Kirwan; Jonathan J. Byrne; Christian Ludwig; Henrik Isackson; Arash Yavari; Nicolaj B. Støttrup; Hussain Contractor; Thomas J. Cahill; Natasha Sahgal; Daniel R. Ball; Rune Isak Dupont Birkler; Iain Hargreaves; Daniel A. Tennant; John M. Land; Craig A. Lygate; Mogens Johannsen; Rajesh K. Kharbanda; Stefan Neubauer; Charles Redwood; Rafael de Cabo; Ismayil Ahmet; Mark I. Talan; Ulrich L. Günther

Summary The citric acid cycle (CAC) metabolite fumarate has been proposed to be cardioprotective; however, its mechanisms of action remain to be determined. To augment cardiac fumarate levels and to assess fumarates cardioprotective properties, we generated fumarate hydratase (Fh1) cardiac knockout (KO) mice. These fumarate-replete hearts were robustly protected from ischemia-reperfusion injury (I/R). To compensate for the loss of Fh1 activity, KO hearts maintain ATP levels in part by channeling amino acids into the CAC. In addition, by stabilizing the transcriptional regulator Nrf2, Fh1 KO hearts upregulate protective antioxidant response element genes. Supporting the importance of the latter mechanism, clinically relevant doses of dimethylfumarate upregulated Nrf2 and its target genes, hence protecting control hearts, but failed to similarly protect Nrf2-KO hearts in an in vivo model of myocardial infarction. We propose that clinically established fumarate derivatives activate the Nrf2 pathway and are readily testable cytoprotective agents.


Biology Open | 2013

Nrf2 impacts cellular bioenergetics by controlling substrate availability for mitochondrial respiration

Kira M. Holmström; Liam Baird; Ying Zhang; Iain Hargreaves; Annapurna Chalasani; John M. Land; Lee Stanyer; Masayuki Yamamoto; Albena T. Dinkova-Kostova; Andrey Y. Abramov

Summary Transcription factor Nrf2 and its repressor Keap1 regulate a network of cytoprotective genes involving more than 1% of the genome, their best known targets being drug-metabolizing and antioxidant genes. Here we demonstrate a novel role for this pathway in directly regulating mitochondrial bioenergetics in murine neurons and embryonic fibroblasts. Loss of Nrf2 leads to mitochondrial depolarisation, decreased ATP levels and impaired respiration, whereas genetic activation of Nrf2 increases the mitochondrial membrane potential and ATP levels, the rate of respiration and the efficiency of oxidative phosphorylation. We further show that Nrf2-deficient cells have increased production of ATP in glycolysis, which is then used by the F1Fo-ATPase for maintenance of the mitochondrial membrane potential. While the levels and in vitro activities of the respiratory complexes are unaffected by Nrf2 deletion, their activities in isolated mitochondria and intact live cells are substantially impaired. In addition, the rate of regeneration of NADH after inhibition of respiration is much slower in Nrf2-knockout cells than in their wild-type counterparts. Taken together, these results show that Nrf2 directly regulates cellular energy metabolism through modulating the availability of substrates for mitochondrial respiration. Our findings highlight the importance of efficient energy metabolism in Nrf2-mediated cytoprotection.


PLOS Genetics | 2010

A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy

Houman Ashrafian; Louise Docherty; Vincenzo C. Leo; Christopher Towlson; Monica Neilan; Violetta Steeples; Craig A. Lygate; Tertius Hough; Stuart Townsend; Debbie Williams; Sara Wells; Dominic P. Norris; Sarah Glyn-Jones; John M. Land; Ivana Barbaric; Zuzanne Lalanne; Paul Denny; Dorota Szumska; Shoumo Bhattacharya; Julian L. Griffin; Iain Hargreaves; Narcis Fernandez-Fuentes; Michael Cheeseman; Hugh Watkins; T. Neil Dear

Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.


Epilepsy Research | 2002

Mitochondrial dysfunction associated with neuronal death following status epilepticus in rat

Hannah R. Cock; Xin Tong; Iain Hargreaves; Simon Heales; John B. Clark; P.N. Patsalos; Maria Thom; Michael J. Groves; A. H. V. Schapira; Simon Shorvon; Matthew C. Walker

Status epilepticus (SE) in humans and animal models results in significant cerebral damage and an increased risk of subsequent seizures, associated with a characteristic pattern of neuronal loss particularly affecting the hippocampus. Seizure related cell death is considered to be excitotoxic, but studies have been limited, concentrating on terminal events rather than initial mechanisms. We have studied the biochemical events in the first few days following SE. Self-sustaining limbic SE was induced in adult rats using perforant path stimulation, and animals were allowed to recover. Biochemical studies were performed at 16, 44 h and 8 days following SE, using spectrophotometric enzyme assays and HPLC on regional brain homogenates compared with those from sham-operated controls. Haematoxylin and eosin histology was also undertaken at each time point. Brain aconitase and alpha-ketoglutarate dehydrogenase (alphaKDH) activity were both significantly (P<0.05) reduced by approximately 20% in the first 16-44 h following status, but had returned to normal by 8 days. These enzymes are part of the tri-carboxylic acid (Krebbs) cycle in the mitochondrial matrix, and are known to be sensitive to free radical, especially peroxynitrite damage. There was a similar decrease in reduced glutathione levels. Histological studies confirmed evidence of acute neuronal damage up to 44 h, and neuronal loss by 8 days. This is the first in vivo demonstration of this pattern of mitochondrial dysfunction and loss of brain glutathione following SE. The pattern of abnormalities is consistent with reversible mechanisms being involved in excitotoxic cell damage. This, together with the timing of changes, suggests new avenues for therapeutic intervention.


Brain | 2014

Treatable childhood neuronopathy caused by mutations in riboflavin transporter RFVT2

A. Reghan Foley; Manoj P. Menezes; Amelie Pandraud; Michael Gonzalez; Ahmad Al-Odaib; Alexander J. Abrams; Kumiko Sugano; Atsushi Yonezawa; Adnan Y. Manzur; Joshua Burns; Imelda Hughes; B. Gary McCullagh; Heinz Jungbluth; Ming Lim; Jean-Pierre Lin; André Mégarbané; J. Andoni Urtizberea; Ayaz H. Shah; Jayne Antony; Richard Webster; Alexander Broomfield; Joanne Ng; Ann Agnes Mathew; James J. O’Byrne; Eva Forman; M. Scoto; Manish Prasad; Katherine O’Brien; S. E. Olpin; Marcus Oppenheim

Childhood onset motor neuron diseases or neuronopathies are a clinically heterogeneous group of disorders. A particularly severe subgroup first described in 1894, and subsequently called Brown-Vialetto-Van Laere syndrome, is characterized by progressive pontobulbar palsy, sensorineural hearing loss and respiratory insufficiency. There has been no treatment for this progressive neurodegenerative disorder, which leads to respiratory failure and usually death during childhood. We recently reported the identification of SLC52A2, encoding riboflavin transporter RFVT2, as a new causative gene for Brown-Vialetto-Van Laere syndrome. We used both exome and Sanger sequencing to identify SLC52A2 mutations in patients presenting with cranial neuropathies and sensorimotor neuropathy with or without respiratory insufficiency. We undertook clinical, neurophysiological and biochemical characterization of patients with mutations in SLC52A2, functionally analysed the most prevalent mutations and initiated a regimen of high-dose oral riboflavin. We identified 18 patients from 13 families with compound heterozygous or homozygous mutations in SLC52A2. Affected individuals share a core phenotype of rapidly progressive axonal sensorimotor neuropathy (manifesting with sensory ataxia, severe weakness of the upper limbs and axial muscles with distinctly preserved strength of the lower limbs), hearing loss, optic atrophy and respiratory insufficiency. We demonstrate that SLC52A2 mutations cause reduced riboflavin uptake and reduced riboflavin transporter protein expression, and we report the response to high-dose oral riboflavin therapy in patients with SLC52A2 mutations, including significant and sustained clinical and biochemical improvements in two patients and preliminary clinical response data in 13 patients with associated biochemical improvements in 10 patients. The clinical and biochemical responses of this SLC52A2-specific cohort suggest that riboflavin supplementation can ameliorate the progression of this neurodegenerative condition, particularly when initiated soon after the onset of symptoms.

Collaboration


Dive into the Iain Hargreaves's collaboration.

Top Co-Authors

Avatar

Simon Heales

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

John M. Land

University College London

View shared research outputs
Top Co-Authors

Avatar

Shamima Rahman

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrey Y. Abramov

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Henry Houlden

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Janice L. Holton

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Mary G. Sweeney

UCL Institute of Neurology

View shared research outputs
Researchain Logo
Decentralizing Knowledge