Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malgorzata Swider is active.

Publication


Featured researches published by Malgorzata Swider.


Archives of Ophthalmology | 2012

Gene Therapy for Leber Congenital Amaurosis Caused by RPE65 Mutations: Safety and Efficacy in 15 Children and Adults Followed Up to 3 Years

Samuel G. Jacobson; Artur V. Cideciyan; R. Ratnakaram; Elise Héon; Sharon B. Schwartz; Alejandro J. Roman; Marc C. Peden; Tomas S. Aleman; Sanford L. Boye; Alexander Sumaroka; Thomas J. Conlon; Roberto Calcedo; Ji-jing Pang; Kirsten E. Erger; Melani B. Olivares; Cristina L. Mullins; Malgorzata Swider; Shalesh Kaushal; William J. Feuer; Alessandro Iannaccone; Gerald A. Fishman; Edwin M. Stone; Barry J. Byrne; William W. Hauswirth

OBJECTIVE To determine the safety and efficacy of subretinal gene therapy in the RPE65 form of Leber congenital amaurosis using recombinant adeno-associated virus 2 (rAAV2) carrying the RPE65 gene. DESIGN Open-label, dose-escalation phase I study of 15 patients (range, 11-30 years of age) evaluated after subretinal injection of the rAAV2- RPE65 vector into the worse-functioning eye. Five cohorts represented 4 dose levels and 2 different injection strategies. MAIN OUTCOME MEASURES Primary outcomes were systemic and ocular safety. Secondary outcomes assayed visual function with dark-adapted full-field sensitivity testing and visual acuity with Early Treatment Diabetic Retinopathy Study charts. Further assays included immune responses to the vector, static visual fields, pupillometry, mobility performance, and optical coherence tomography. RESULTS No systemic toxicity was detected; ocular adverse events were related to surgery. Visual function improved in all patients to different degrees; improvements were localized to treated areas. Cone and rod sensitivities increased significantly in the study eyes but not in the control eyes. Minor acuity improvements were recorded in many study and control eyes. Major acuity improvements occurred in study eyes with the lowest entry acuities and parafoveal fixation loci treated with subretinal injections. Other patients with better foveal structure lost retinal thickness and acuity after subfoveal injections. CONCLUSIONS Gene therapy for Leber congenital amaurosis caused by RPE65 mutations is sufficiently safe and substantially efficacious in the extrafoveal retina. There is no benefit and some risk in treating the fovea. No evidence of age-dependent effects was found. Our results point to specific treatment strategies for subsequent phases. APPLICATION TO CLINICAL PRACTICE Gene therapy for inherited retinal disease has the potential to become a future part of clinical practice. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00481546.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement

Artur V. Cideciyan; Samuel G. Jacobson; William A. Beltran; Alexander Sumaroka; Malgorzata Swider; Alejandro J. Roman; Melani B. Olivares; Sharon B. Schwartz; András M. Komáromy; William W. Hauswirth; Gustavo D. Aguirre

Significance The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration. We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans. In the canine model, the same result occurs when treatment is at the disease stage equivalent to humans. The study shows the need for combinatorial therapy to improve vision in the short term but also slow retinal degeneration in the long term. Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5–11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa

William A. Beltran; Artur V. Cideciyan; Alfred S. Lewin; Hemant Khanna; Alexander Sumaroka; Vince A. Chiodo; Diego S. Fajardo; Alejandro J. Roman; Wen-Tao Deng; Malgorzata Swider; Tomas S. Aleman; Sanford L. Boye; Sem Genini; Anand Swaroop; William W. Hauswirth; Samuel G. Jacobson; Gustavo D. Aguirre

Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5–vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.


Human Molecular Genetics | 2009

ABCA4 disease progression and a proposed strategy for gene therapy

Artur V. Cideciyan; Malgorzata Swider; Tomas S. Aleman; Yaroslav Tsybovsky; Sharon B. Schwartz; Elizabeth A. M. Windsor; Alejandro J. Roman; Alexander Sumaroka; Janet D. Steinberg; Samuel G. Jacobson; Edwin M. Stone; Krzysztof Palczewski

Autosomal recessive retinal diseases caused by mutations in the ABCA4 gene are being considered for gene replacement therapy. All individuals with ABCA4-disease show macular degeneration, but only some are thought to progress to retina-wide blindness. It is currently not predictable if or when specific ABCA4 genotypes will show extramacular disease, and how fast it will progress thereafter. Early clinical trials of focal subretinal gene therapy will aim to arrest disease progression in the extramacular retina. In 66 individuals with known disease-causing ABCA4 alleles, we defined retina-wide disease expression by measuring rod- and cone-photoreceptor-mediated vision. Serial measurements over a mean period of 8.7 years were consistent with a model wherein a normal plateau phase of variable length was followed by initiation of retina-wide disease that progressed exponentially. Once initiated, the mean rate of disease progression was 1.1 log/decade for rods and 0.45 log/decade for cones. Spatio-temporal progression of disease could be described as the sum of two components, one with a central-to-peripheral gradient and the other with a uniform retina-wide pattern. Estimates of the age of disease initiation were used as a severity metric and contributions made by each ABCA4 allele were predicted. One-third of the non-truncating alleles were found to cause more severe disease than premature truncations supporting the existence of a pathogenic component beyond simple loss of function. Genotype-based inclusion/exclusion criteria and prediction of the age of retina-wide disease initiation will be invaluable for selecting appropriate candidates for clinical trials in ABCA4 disease.


Journal of The Optical Society of America A-optics Image Science and Vision | 2007

Reduced-illuminance autofluorescence imaging in ABCA4-associated retinal degenerations

Artur V. Cideciyan; Malgorzata Swider; Tomas S. Aleman; Marisa I. Roman; Alexander Sumaroka; Sharon B. Schwartz; Edwin M. Stone; Samuel G. Jacobson

The health of the retinal pigment epithelium (RPE) can be estimated with autofluorescence (AF) imaging of lipofuscin, which accumulates as a byproduct of retinal exposure to light. Lipofuscin may be toxic to the RPE, and its toxicity may be enhanced by short-wavelength (SW) illumination. The high-intensity and SW excitation light used in conventional AF imaging could, at least in principle, increase the rate of lipofuscin accumulation and/or increase its toxicity. We considered two reduced-illuminance AF imaging (RAFI) methods as alternatives to conventional AF imaging. RAFI methods use either near-infrared (NIR) light or reduced-radiance SW illumination for excitation of fluorophores. We quantified the distribution of RAFI signals in relation to retinal structure and function in patients with the prototypical lipofuscin accumulation disease caused by mutations in ABCA4. There was evidence for two subclinical stages of macular ABCA4 disease involving hyperautofluorescence of both SW- and NIR-RAFI with and without associated loss of visual function. Use of RAFI methods and microperimetry in future clinical trials involving lipofuscinopathies should allow quantification of subclinical disease expression and progression without subjecting the diseased retina/RPE to undue light exposure.


Human Molecular Genetics | 2011

Cone photoreceptors are the main targets for gene therapy of NPHP5 (IQCB1) or NPHP6 (CEP290) blindness: generation of an all-cone Nphp6 hypomorph mouse that mimics the human retinal ciliopathy

Artur V. Cideciyan; Rivka A. Rachel; Tomas S. Aleman; Malgorzata Swider; Sharon B. Schwartz; Alexander Sumaroka; Alejandro J. Roman; Edwin M. Stone; Samuel G. Jacobson; Anand Swaroop

Leber congenital amaurosis (LCA), a severe autosomal recessive childhood blindness, is caused by mutations in at least 15 genes. The most common molecular form is a ciliopathy due to NPHP6 (CEP290) mutations and subjects have profound loss of vision. A similarly severe phenotype occurs in the related ciliopathy NPHP5 (IQCB1)-LCA. Recent success of retinal gene therapy in one form of LCA prompted the question whether we know enough about human NPHP5 and NPHP6 disease to plan such treatment. We determined that there was early-onset rapid degeneration of rod photoreceptors in young subjects with these ciliopathies. Rod outer segment (OS) lamination, when detectable, was disorganized. Retinal pigment epithelium lipofuscin accumulation indicated that rods had existed in the past in most subjects. In contrast to early rod losses, the all-cone human fovea in NPHP5- and NPHP6-LCA of all ages retained cone nuclei, albeit with abnormal inner segments and OS. The rd16 mouse, carrying a hypomorphic Nphp6 allele, was a good model of the rod-dominant human extra-foveal retina. Rd16 mice showed normal genesis of photoreceptors, including the formation of cilia, followed by abnormal elaboration of OS and rapid degeneration. To produce a model of the all-cone human fovea in NPHP6-LCA, we generated rd16;Nrl-/- double-mutant mice. They showed substantially retained cone photoreceptors with disproportionate cone function loss, such as in the human disease. NPHP5- and NPHP6-LCA across a wide age spectrum are thus excellent candidates for cone-directed gene augmentation therapy, and the rd16;Nrl-/- mouse is an appropriate model for pre-clinical proof-of-concept studies.


Investigative Ophthalmology & Visual Science | 2012

Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials.

Artur V. Cideciyan; Malgorzata Swider; Tomas S. Aleman; Willam J. Feuer; Sharon B. Schwartz; Robert C. Russell; Janet D. Steinberg; Edwin M. Stone; Samuel G. Jacobson

PURPOSE To measure macular visual function in patients with unstable fixation, to define the photoreceptor source of this function, and to estimate its test-retest repeatability as a prerequisite to clinical trials. METHODS Patients (n = 38) with ABCA4-associated retinal degeneration (RD) or with retinitis pigmentosa (RP) were studied with retina-tracking microperimetry along the foveo-papillary profile between the fovea and the optic nerve head, and point-by-point test-retest repeatability was estimated. A subset with foveal fixation was also studied with dark-adapted projection perimetry using monochromatic blue and red stimuli along the horizontal meridian. RESULTS Macular function in ABCA4-RD patients transitioned from lower sensitivity at the parafovea to higher sensitivity in the perifovea. RP patients had the inverse pattern. Red-on-red microperimetric sensitivities successfully avoided ceiling effects and were highly correlated with absolute sensitivities. Point-by-point test-retest limits (95% confidence intervals) were ±4.2 dB; repeatability was not related to mean sensitivity, eccentricity from the fovea, age, fixation location, or instability. Repeatability was also not related to the local slope of sensitivity and was unchanged in the parapapillary retina. CONCLUSIONS Microperimetry allows reliable testing of macular function in RD patients without foveal fixation in longitudinal studies evaluating natural disease progression or efficacy of therapeutic trials. A single estimate of test-retest repeatability can be used to determine significant changes in visual function at individual retinal loci within diseased regions that are homogeneous and those that are heterogeneous and also in transition zones at high risk for disease progression.


Investigative Ophthalmology & Visual Science | 2011

Human Retinal Disease from AIPL1 Gene Mutations: Foveal Cone Loss with Minimal Macular Photoreceptors and Rod Function Remaining

Samuel G. Jacobson; Artur V. Cideciyan; Tomas S. Aleman; Alexander Sumaroka; Alejandro J. Roman; Malgorzata Swider; Sharon B. Schwartz; Eyal Banin; Edwin M. Stone

PURPOSE To determine the human retinal phenotype caused by mutations in the gene encoding AIPL1 (Aryl hydrocarbon receptor-interacting protein-like 1) now that there are proof-of-concept results for gene therapy success in Aipl1-deficient mice. METHODS Leber congenital amaurosis (LCA) patients (n = 10) and one patient with a later-onset retinal degeneration (RD) and AIPL1 mutations were studied by ocular examination, retinal imaging, perimetry, full-field sensitivity testing, and pupillometry. RESULTS The LCA patients had severe visual acuity loss early in life, nondetectable electroretinograms (ERGs), and little or no detectable visual fields. Hallmarks of retinal degeneration were present in a wide region, including the macula and midperiphery; there was some apparent peripheral retinal sparing. Cross-sectional imaging showed foveal cone photoreceptor loss with a ring of minimally preserved paracentral photoreceptor nuclear layer. Features of retinal remodeling were present eccentric to the region of detectable photoreceptors. Full-field sensitivity was reduced by at least 2 log units, and chromatic stimuli, by psychophysics and pupillometry, revealed retained but impaired rod function. The RD patient, examined serially over two decades (ages, 45-67 years), retained an ERG in the fifth decade of life with abnormal rod and cone signals; and there was progressive loss of central and peripheral function. CONCLUSIONS AIPL1-LCA, unlike some other forms of LCA with equally severe visual disturbance, shows profound loss of foveal as well as extrafoveal photoreceptors. The more unusual late-onset and slower form of AIPL1 disease may be better suited to gene augmentation therapy and is worthy of detection and further study.


PLOS ONE | 2014

Canine Retina Has a Primate Fovea-Like Bouquet of Cone Photoreceptors Which Is Affected by Inherited Macular Degenerations

William A. Beltran; Artur V. Cideciyan; Karina E. Guziewicz; Malgorzata Swider; Erin M. Scott; Svetlana V. Savina; Gordon Ruthel; Frank P. Stefano; Lingli Zhang; Richard Zorger; Alexander Sumaroka; Samuel G. Jacobson; Gustavo D. Aguirre

Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease.

William A. Beltran; Artur V. Cideciyan; Malgorzata Swider; Mychajlo S. Kosyk; Kendra McDaid; Inna Martynyuk; Gui-shuang Ying; James Shaffer; Wen-Tao Deng; Sanford L. Boye; Alfred S. Lewin; William W. Hauswirth; Samuel G. Jacobson; Gustavo D. Aguirre

Significance Corrective gene therapies for inherited retinal degenerations are being developed with the expectation that even patients in later stages of the disease will benefit from such intervention. Evidence in animal models for a rescue after the onset of photoreceptor loss is scarce, and recent results from patients enrolled in two of the gene therapy clinical trials for a congenital form of blindness (RPE65-LCA) show that, despite transient improvement in visual function, photoreceptor cell death remains unabated. Here we show in a canine model for a common and severe form of X-linked retinal degeneration that gene therapy successfully stops photoreceptor cell death, improves the structure of retinal cells, and prevents vision loss for more than 2 y. Inherited retinal degenerations cause progressive loss of photoreceptor neurons with eventual blindness. Corrective or neuroprotective gene therapies under development could be delivered at a predegeneration stage to prevent the onset of disease, as well as at intermediate-degeneration stages to slow the rate of progression. Most preclinical gene therapy successes to date have been as predegeneration interventions. In many animal models, as well as in human studies, to date, retinal gene therapy administered well after the onset of degeneration was not able to modify the rate of progression even when successfully reversing dysfunction. We evaluated consequences of gene therapy delivered at intermediate stages of disease in a canine model of X-linked retinitis pigmentosa (XLRP) caused by a mutation in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene. Spatiotemporal natural history of disease was defined and therapeutic dose selected based on predegeneration results. Then interventions were timed at earlier and later phases of intermediate-stage disease, and photoreceptor degeneration monitored with noninvasive imaging, electrophysiological function, and visual behavior for more than 2 y. All parameters showed substantial and significant arrest of the progressive time course of disease with treatment, which resulted in long-term improved retinal function and visual behavior compared with control eyes. Histology confirmed that the human RPGR transgene was stably expressed in photoreceptors and associated with improved structural preservation of rods, cones, and ON bipolar cells together with correction of opsin mislocalization. These findings in a clinically relevant large animal model demonstrate the long-term efficacy of RPGR gene augmentation and substantially broaden the therapeutic window for intervention in patients with RPGR-XLRP.

Collaboration


Dive into the Malgorzata Swider's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas S. Aleman

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge