Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William A. Beltran is active.

Publication


Featured researches published by William A. Beltran.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Human retinal gene therapy for Leber congenital amaurosis shows advancing retinal degeneration despite enduring visual improvement

Artur V. Cideciyan; Samuel G. Jacobson; William A. Beltran; Alexander Sumaroka; Malgorzata Swider; Alejandro J. Roman; Melani B. Olivares; Sharon B. Schwartz; András M. Komáromy; William W. Hauswirth; Gustavo D. Aguirre

Significance The first retinal gene therapy in human blindness from RPE65 mutations has focused on safety and efficacy, as defined by improved vision. The disease component not studied, however, has been the fate of photoreceptors in this progressive retinal degeneration. We show that gene therapy improves vision for at least 3 y, but photoreceptor degeneration progresses unabated in humans. In the canine model, the same result occurs when treatment is at the disease stage equivalent to humans. The study shows the need for combinatorial therapy to improve vision in the short term but also slow retinal degeneration in the long term. Leber congenital amaurosis (LCA) associated with retinal pigment epithelium-specific protein 65 kDa (RPE65) mutations is a severe hereditary blindness resulting from both dysfunction and degeneration of photoreceptors. Clinical trials with gene augmentation therapy have shown partial reversal of the dysfunction, but the effects on the degeneration are not known. We evaluated the consequences of gene therapy on retinal degeneration in patients with RPE65-LCA and its canine model. In untreated RPE65-LCA patients, there was dysfunction and degeneration of photoreceptors, even at the earliest ages. Examined serially over years, the outer photoreceptor nuclear layer showed progressive thinning. Treated RPE65-LCA showed substantial visual improvement in the short term and no detectable decline from this new level over the long term. However, retinal degeneration continued to progress unabated. In RPE65-mutant dogs, the first one-quarter of their lifespan showed only dysfunction, and there was normal outer photoreceptor nuclear layer thickness retina-wide. Dogs treated during the earlier dysfunction-only stage showed improved visual function and dramatic protection of treated photoreceptors from degeneration when measured 5–11 y later. Dogs treated later during the combined dysfunction and degeneration stage also showed visual function improvement, but photoreceptor loss continued unabated, the same as in human RPE65-LCA. The results suggest that, in RPE65 disease treatment, protection from visual function deterioration cannot be assumed to imply protection from degeneration. The effects of gene augmentation therapy are complex and suggest a need for a combinatorial strategy in RPE65-LCA to not only improve function in the short term but also slow retinal degeneration in the long term.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa

William A. Beltran; Artur V. Cideciyan; Alfred S. Lewin; Hemant Khanna; Alexander Sumaroka; Vince A. Chiodo; Diego S. Fajardo; Alejandro J. Roman; Wen-Tao Deng; Malgorzata Swider; Tomas S. Aleman; Sanford L. Boye; Sem Genini; Anand Swaroop; William W. Hauswirth; Samuel G. Jacobson; Gustavo D. Aguirre

Hereditary retinal blindness is caused by mutations in genes expressed in photoreceptors or retinal pigment epithelium. Gene therapy in mouse and dog models of a primary retinal pigment epithelium disease has already been translated to human clinical trials with encouraging results. Treatment for common primary photoreceptor blindness, however, has not yet moved from proof of concept to the clinic. We evaluated gene augmentation therapy in two blinding canine photoreceptor diseases that model the common X-linked form of retinitis pigmentosa caused by mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, which encodes a photoreceptor ciliary protein, and provide evidence that the therapy is effective. After subretinal injections of adeno-associated virus-2/5–vectored human RPGR with human IRBP or GRK1 promoters, in vivo imaging showed preserved photoreceptor nuclei and inner/outer segments that were limited to treated areas. Both rod and cone photoreceptor function were greater in treated (three of four) than in control eyes. Histopathology indicated normal photoreceptor structure and reversal of opsin mislocalization in treated areas expressing human RPGR protein in rods and cones. Postreceptoral remodeling was also corrected: there was reversal of bipolar cell dendrite retraction evident with bipolar cell markers and preservation of outer plexiform layer thickness. Efficacy of gene therapy in these large animal models of X-linked retinitis pigmentosa provides a path for translation to human treatment.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Human cone photoreceptor dependence on RPE65 isomerase

Samuel G. Jacobson; Tomas S. Aleman; Artur V. Cideciyan; Elise Héon; Marcin Golczak; William A. Beltran; Alexander Sumaroka; Sharon B. Schwartz; Alejandro J. Roman; Elizabeth A. M. Windsor; James M. Wilson; Gustavo D. Aguirre; Edwin M. Stone; Krzysztof Palczewski

The visual (retinoid) cycle, the enzymatic pathway that regenerates chromophore after light absorption, is located primarily in the retinal pigment epithelium (RPE) and is essential for rod photoreceptor survival. Whether this pathway also is essential for cone photoreceptor survival is unknown, and there are no data from man or monkey to address this question. The visual cycle is naturally disrupted in humans with Leber congenital amaurosis (LCA), which is caused by mutations in RPE65, the gene that encodes the retinoid isomerase. We investigated such patients over a wide age range (3–52 years) for effects on the cone-rich human fovea. In vivo microscopy of the fovea showed that, even at the youngest ages, patients with RPE65-LCA exhibited cone photoreceptor loss. This loss was incomplete, however, and residual cone photoreceptor structure and function persisted for decades. Basic questions about localization of RPE65 and isomerase activity in the primate eye were addressed by examining normal macaque. RPE65 was definitively localized by immunocytochemistry to the central RPE and, by immunoblotting, appeared to concentrate in the central retina. The central retinal RPE layer also showed a 4-fold higher retinoid isomerase activity than more peripheral RPE. Early cone photoreceptor losses in RPE65-LCA suggest that robust RPE65-based visual chromophore production is important for cones; the residual retained cone structure and function support the speculation that alternative pathways are critical for cone photoreceptor survival.


Gene Therapy | 2010

rAAV2/5 Gene-Targeting to Rods: Dose-Dependent Efficiency and Complications Associated With Different Promoters

William A. Beltran; Sanford L. Boye; Shannon E. Boye; Vince A. Chiodo; Alfred S. Lewin; William W. Hauswirth; Gustavo D. Aguirre

A prerequisite for using corrective gene therapy to treat humans with inherited retinal degenerative diseases that primarily affect rods is to develop viral vectors that target specifically this population of photoreceptors. The delivery of a viral vector with photoreceptor tropism coupled with a rod-specific promoter is likely to be the safest and most efficient approach to target expression of the therapeutic gene to rods. Three promoters that included a fragment of the proximal mouse opsin promoter (mOP), the human G-protein-coupled receptor protein kinase 1 promoter (hGRK1), or the cytomegalovirus immediate early enhancer combined with the chicken β actin proximal promoter CBA were evaluated for their specificity and robustness in driving GFP reporter gene expression in rods, when packaged in a recombinant adeno-associated viral vector of serotype 2/5 (AAV2/5), and delivered via subretinal injection to the normal canine retina. Photoreceptor-specific promoters (mOP, hGRK1) targeted robust GFP expression to rods, whereas the ubiquitously expressed CBA promoter led to transgene expression in the retinal pigment epithelium, rods, cones and rare Müller, horizontal and ganglion cells. Late onset inflammation was frequently observed both clinically and histologically with all three constructs when the highest viral titers were injected. Cone loss in the injected regions of the retinas that received the highest titers occurred with both the hGRK1 and CBA promoters. Efficient and specific rod transduction, together with preservation of retinal structure was achieved with both mOP and hGRK1 promoters when viral titers in the order of 1011 vg ml–1 were used.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Restoration of visual function by expression of a light-gated mammalian ion channel in retinal ganglion cells or ON-bipolar cells

Benjamin Gaub; Michael H. Berry; Amy Holt; Andreas Reiner; Michael A. Kienzler; Natalia Dolgova; Sergei S. Nikonov; Gustavo D. Aguirre; William A. Beltran; John G. Flannery; Ehud Y. Isacoff

Significance We restored visual function to animal models of human blindness using a chemical compound that photosensitizes a mammalian ion channel. Virus-mediated expression of this light sensor in surviving retinal cells of blind mice restored light responses in vitro, reanimated innate light avoidance, and enabled learned visually guided behavior. The treatment also restored light responses to the retina of blind dogs. Patients that might benefit from this treatment would need to have intact ganglion cell and nerve fiber layers. In general, these are patients diagnosed with retinitis pigmentosa and some forms of Leber congenital amaurosis. Patients diagnosed with other types of blindness, for example, age-related macular degeneration or diabetic retinopathy, would not be candidates for this treatment. Most inherited forms of blindness are caused by mutations that lead to photoreceptor cell death but spare second- and third-order retinal neurons. Expression of the light-gated excitatory mammalian ion channel light-gated ionotropic glutamate receptor (LiGluR) in retinal ganglion cells (RGCs) of the retina degeneration (rd1) mouse model of blindness was previously shown to restore some visual functions when stimulated by UV light. Here, we report restored retinal function in visible light in rodent and canine models of blindness through the use of a second-generation photoswitch for LiGluR, maleimide-azobenzene-glutamate 0 with peak efficiency at 460 nm (MAG0460). In the blind rd1 mouse, multielectrode array recordings of retinal explants revealed robust and uniform light-evoked firing when LiGluR-MAG0460 was targeted to RGCs and robust but diverse activity patterns in RGCs when LiGluR-MAG0460 was targeted to ON-bipolar cells (ON-BCs). LiGluR-MAG0460 in either RGCs or ON-BCs of the rd1 mouse reinstated innate light-avoidance behavior and enabled mice to distinguish between different temporal patterns of light in an associative learning task. In the rod-cone dystrophy dog model of blindness, LiGluR-MAG0460 in RGCs restored robust light responses to retinal explants and intravitreal delivery of LiGluR and MAG0460 was well tolerated in vivo. The results in both large and small animal models of photoreceptor degeneration provide a path to clinical translation.


Molecular Therapy | 2013

Transient photoreceptor deconstruction by CNTF enhances rAAV-mediated cone functional rescue in late stage CNGB3-achromatopsia.

András M. Komáromy; Jessica S. Rowlan; Amanda T. Parton Corr; Shelby L. Reinstein; Sanford L. Boye; A. E. Cooper; Amaliris Gonzalez; Britt Levy; Rong Wen; William W. Hauswirth; William A. Beltran; Gustavo D. Aguirre

Achromatopsia is a genetic disorder of cones, and one of the most common forms is a channelopathy caused by mutations in the β-subunit, CNGB3, of the cone cyclic nucleotide-gated (CNG) channel. Recombinant adeno-associated virus of serotype 5 (rAAV5)-mediated gene transfer of human CNGB3 cDNA to mutant dog cones results in functional and structural rescue in dogs <0.5 years of age, but treatment is minimally effective in dogs >1 year. We now test a new therapeutic concept by combining gene therapy with the administration of ciliary neurotrophic factor (CNTF). Intravitreal CNTF causes transient dedifferentiation of photoreceptors, a process called deconstruction, whereby visual cells become immature with short outer segments, and decreased retinal function and gene expression that subsequently return to normal. Cone function was successfully rescued in all mutant dogs treated between 14 and 42 months of age with this strategy. CNTF-mediated deconstruction and regeneration of the photoreceptor outer segments prepares the mutant cones optimally for gene augmentation therapy.


PLOS ONE | 2014

Canine Retina Has a Primate Fovea-Like Bouquet of Cone Photoreceptors Which Is Affected by Inherited Macular Degenerations

William A. Beltran; Artur V. Cideciyan; Karina E. Guziewicz; Malgorzata Swider; Erin M. Scott; Svetlana V. Savina; Gordon Ruthel; Frank P. Stefano; Lingli Zhang; Richard Zorger; Alexander Sumaroka; Samuel G. Jacobson; Gustavo D. Aguirre

Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Successful arrest of photoreceptor and vision loss expands the therapeutic window of retinal gene therapy to later stages of disease.

William A. Beltran; Artur V. Cideciyan; Malgorzata Swider; Mychajlo S. Kosyk; Kendra McDaid; Inna Martynyuk; Gui-shuang Ying; James Shaffer; Wen-Tao Deng; Sanford L. Boye; Alfred S. Lewin; William W. Hauswirth; Samuel G. Jacobson; Gustavo D. Aguirre

Significance Corrective gene therapies for inherited retinal degenerations are being developed with the expectation that even patients in later stages of the disease will benefit from such intervention. Evidence in animal models for a rescue after the onset of photoreceptor loss is scarce, and recent results from patients enrolled in two of the gene therapy clinical trials for a congenital form of blindness (RPE65-LCA) show that, despite transient improvement in visual function, photoreceptor cell death remains unabated. Here we show in a canine model for a common and severe form of X-linked retinal degeneration that gene therapy successfully stops photoreceptor cell death, improves the structure of retinal cells, and prevents vision loss for more than 2 y. Inherited retinal degenerations cause progressive loss of photoreceptor neurons with eventual blindness. Corrective or neuroprotective gene therapies under development could be delivered at a predegeneration stage to prevent the onset of disease, as well as at intermediate-degeneration stages to slow the rate of progression. Most preclinical gene therapy successes to date have been as predegeneration interventions. In many animal models, as well as in human studies, to date, retinal gene therapy administered well after the onset of degeneration was not able to modify the rate of progression even when successfully reversing dysfunction. We evaluated consequences of gene therapy delivered at intermediate stages of disease in a canine model of X-linked retinitis pigmentosa (XLRP) caused by a mutation in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene. Spatiotemporal natural history of disease was defined and therapeutic dose selected based on predegeneration results. Then interventions were timed at earlier and later phases of intermediate-stage disease, and photoreceptor degeneration monitored with noninvasive imaging, electrophysiological function, and visual behavior for more than 2 y. All parameters showed substantial and significant arrest of the progressive time course of disease with treatment, which resulted in long-term improved retinal function and visual behavior compared with control eyes. Histology confirmed that the human RPGR transgene was stably expressed in photoreceptors and associated with improved structural preservation of rods, cones, and ON bipolar cells together with correction of opsin mislocalization. These findings in a clinically relevant large animal model demonstrate the long-term efficacy of RPGR gene augmentation and substantially broaden the therapeutic window for intervention in patients with RPGR-XLRP.


PLOS ONE | 2013

Recombinant AAV-Mediated BEST1 Transfer to the Retinal Pigment Epithelium: Analysis of Serotype-Dependent Retinal Effects

Karina E. Guziewicz; Barbara Zangerl; András M. Komáromy; V. Chiodo; Sanford L. Boye; William W. Hauswirth; William A. Beltran; Gustavo D. Aguirre

Mutations in the BEST1 gene constitute an underlying cause of juvenile macular dystrophies, a group of retinal disorders commonly referred to as bestrophinopathies and usually diagnosed in early childhood or adolescence. The disease primarily affects macular and paramacular regions of the eye leading to major declines in central vision later in life. Currently, there is no cure or surgical management for BEST1-associated disorders. The recently characterized human disease counterpart, canine multifocal retinopathy (cmr), recapitulates a full spectrum of clinical and molecular features observed in human bestrophinopathies and offers a valuable model system for development and testing of therapeutic strategies. In this study, the specificity, efficiency and safety of rAAV-mediated transgene expression driven by the human VMD2 promoter were assessed in wild-type canine retinae. While the subretinal delivery of rAAV2/1 vector serotype was associated with cone damage in the retina when BEST1 and GFP were co-expressed, the rAAV2/2 vector serotype carrying either GFP reporter or BEST1 transgene under control of human VMD2 promoter was safe, and enabled specific transduction of the RPE cell monolayer that was stable for up to 6 months post injection. These encouraging studies with the rAAV2/2 vector lay the groundwork for development of gene augmentation therapy for human bestrophinopathies.


PLOS ONE | 2011

Photoreceptor Cell Death, Proliferation and Formation of Hybrid Rod/S-Cone Photoreceptors in the Degenerating STK38L Mutant Retina

Ágnes I. Berta; Kathleen Boesze-Battaglia; Sem Genini; Orly Goldstein; Paul J. O'Brien; Ágoston Szél; Gregory M. Acland; William A. Beltran; Gustavo D. Aguirre

A homozygous mutation in STK38L in dogs impairs the late phase of photoreceptor development, and is followed by photoreceptor cell death (TUNEL) and proliferation (PCNA, PHH3) events that occur independently in different cells between 7–14 weeks of age. During this period, the outer nuclear layer (ONL) cell number is unchanged. The dividing cells are of photoreceptor origin, have rod opsin labeling, and do not label with markers specific for macrophages/microglia (CD18) or Müller cells (glutamine synthetase, PAX6). Nestin labeling is absent from the ONL although it labels the peripheral retina and ciliary marginal zone equally in normals and mutants. Cell proliferation is associated with increased cyclin A1 and LATS1 mRNA expression, but CRX protein expression is unchanged. Coincident with photoreceptor proliferation is a change in the photoreceptor population. Prior to cell death the photoreceptor mosaic is composed of L/M- and S-cones, and rods. After proliferation, both cone types remain, but the majority of rods are now hybrid photoreceptors that express rod opsin and, to a lesser extent, cone S-opsin, and lack NR2E3 expression. The hybrid photoreceptors renew their outer segments diffusely, a characteristic of cones. The results indicate the capacity for terminally differentiated, albeit mutant, photoreceptors to divide with mutations in this novel retinal degeneration gene.

Collaboration


Dive into the William A. Beltran's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sem Genini

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malgorzata Swider

University of Pennsylvania

View shared research outputs
Researchain Logo
Decentralizing Knowledge