Malick Gibani
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Malick Gibani.
The New England Journal of Medicine | 2016
Katie Ewer; Tommy Rampling; Navin Venkatraman; Georgina Bowyer; Danny Wright; Teresa Lambe; Egeruan B. Imoukhuede; Ruth O. Payne; Sarah Katharina Fehling; Thomas Strecker; Nadine Biedenkopf; Verena Krähling; Claire M. Tully; Nick J. Edwards; Emma Bentley; Dhan Samuel; Geneviève M. Labbé; Jing Jin; Malick Gibani; A. Minhinnick; M. Wilkie; Ian D. Poulton; N. Lella; Rachel Roberts; Felicity Hartnell; Carly M. Bliss; Kailan Sierra-Davidson; Jonathan Powlson; Eleanor Berrie; Richard S Tedder
BACKGROUND The West African outbreak of Ebola virus disease that peaked in 2014 has caused more than 11,000 deaths. The development of an effective Ebola vaccine is a priority for control of a future outbreak. METHODS In this phase 1 study, we administered a single dose of the chimpanzee adenovirus 3 (ChAd3) vaccine encoding the surface glycoprotein of Zaire ebolavirus (ZEBOV) to 60 healthy adult volunteers in Oxford, United Kingdom. The vaccine was administered in three dose levels--1×10(10) viral particles, 2.5×10(10) viral particles, and 5×10(10) viral particles--with 20 participants in each group. We then assessed the effect of adding a booster dose of a modified vaccinia Ankara (MVA) strain, encoding the same Ebola virus glycoprotein, in 30 of the 60 participants and evaluated a reduced prime-boost interval in another 16 participants. We also compared antibody responses to inactivated whole Ebola virus virions and neutralizing antibody activity with those observed in phase 1 studies of a recombinant vesicular stomatitis virus-based vaccine expressing a ZEBOV glycoprotein (rVSV-ZEBOV) to determine relative potency and assess durability. RESULTS No safety concerns were identified at any of the dose levels studied. Four weeks after immunization with the ChAd3 vaccine, ZEBOV-specific antibody responses were similar to those induced by rVSV-ZEBOV vaccination, with a geometric mean titer of 752 and 921, respectively. ZEBOV neutralization activity was also similar with the two vaccines (geometric mean titer, 14.9 and 22.2, respectively). Boosting with the MVA vector increased virus-specific antibodies by a factor of 12 (geometric mean titer, 9007) and increased glycoprotein-specific CD8+ T cells by a factor of 5. Significant increases in neutralizing antibodies were seen after boosting in all 30 participants (geometric mean titer, 139; P<0.001). Virus-specific antibody responses in participants primed with ChAd3 remained positive 6 months after vaccination (geometric mean titer, 758) but were significantly higher in those who had received the MVA booster (geometric mean titer, 1750; P<0.001). CONCLUSIONS The ChAd3 vaccine boosted with MVA elicited B-cell and T-cell immune responses to ZEBOV that were superior to those induced by the ChAd3 vaccine alone. (Funded by the Wellcome Trust and others; ClinicalTrials.gov number, NCT02240875.).
JAMA | 2016
Iain D. Milligan; Malick Gibani; Richard P. Sewell; Elizabeth A. Clutterbuck; Danielle Campbell; Emma Plested; Elizabeth Nuthall; Merryn Voysey; Laura Silva-Reyes; M. Juliana McElrath; Stephen C. De Rosa; Nicole Frahm; Kristen W. Cohen; Georgi Shukarev; Nicola Orzabal; Wilbert van Duijnhoven; Carla Truyers; Nora Bachmayer; Daniel Splinter; Nathaly Samy; Maria Grazia Pau; Hanneke Schuitemaker; Kerstin Luhn; Benoit Callendret; Johan Van Hoof; Macaya Douoguih; Katie Ewer; Brian Angus; Andrew J. Pollard; Matthew D. Snape
IMPORTANCE Developing effective vaccines against Ebola virus is a global priority. OBJECTIVE To evaluate an adenovirus type 26 vector vaccine encoding Ebola glycoprotein (Ad26.ZEBOV) and a modified vaccinia Ankara vector vaccine, encoding glycoproteins from Ebola virus, Sudan virus, Marburg virus, and Tai Forest virus nucleoprotein (MVA-BN-Filo). DESIGN, SETTING, AND PARTICIPANTS Single-center, randomized, placebo-controlled, observer-blind, phase 1 trial performed in Oxford, United Kingdom, enrolling healthy 18- to 50-year-olds from December 2014; 8-month follow-up was completed October 2015. INTERVENTIONS Participants were randomized into 4 groups, within which they were simultaneously randomized 5:1 to receive study vaccines or placebo. Those receiving active vaccines were primed with Ad26.ZEBOV (5 × 10(10) viral particles) or MVA-BN-Filo (1 × 10(8) median tissue culture infective dose) and boosted with the alternative vaccine 28 or 56 days later. A fifth, open-label group received Ad26.ZEBOV boosted by MVA-BN-Filo 14 days later. MAIN OUTCOMES AND MEASURES The primary outcomes were safety and tolerability. All adverse events were recorded until 21 days after each immunization; serious adverse events were recorded throughout the trial. Secondary outcomes were humoral and cellular immune responses to immunization, as assessed by enzyme-linked immunosorbent assay and enzyme-linked immunospot performed at baseline and from 7 days after each immunization until 8 months after priming immunizations. RESULTS Among 87 study participants (median age, 38.5 years; 66.7% female), 72 were randomized into 4 groups of 18, and 15 were included in the open-label group. Four participants did not receive a booster dose; 67 of 75 study vaccine recipients were followed up at 8 months. No vaccine-related serious adverse events occurred. No participant became febrile after MVA-BN-Filo, compared with 3 of 60 participants (5%; 95% CI, 1%-14%) receiving Ad26.ZEBOV in the randomized groups. In the open-label group, 4 of 15 Ad26.ZEBOV recipients (27%; 95% CI, 8%-55%) experienced fever. In the randomized groups, 28 of 29 Ad26.ZEBOV recipients (97%; 95% CI, 82%- 99.9%) and 7 of 30 MVA-BN-Filo recipients (23%; 95% CI, 10%-42%) had detectable Ebola glycoprotein-specific IgG 28 days after primary immunization. All vaccine recipients had specific IgG detectable 21 days postboost and at 8-month follow-up. Within randomized groups, at 7 days postboost, at least 86% of vaccine recipients showed Ebola-specific T-cell responses. CONCLUSIONS AND RELEVANCE In this phase 1 study of healthy volunteers, immunization with Ad26.ZEBOV or MVA-BN-Filo did not result in any vaccine-related serious adverse events. An immune response was observed after primary immunization with Ad26.ZEBOV; boosting by MVA-BN-Filo resulted in sustained elevation of specific immunity. These vaccines are being further assessed in phase 2 and 3 studies. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT02313077.
The Lancet | 2017
Celina Jin; Malick Gibani; Maria Moore; Helene B. Juel; E. A. Jones; James Meiring; Victoria Harris; Jonathan Gardner; Anna Nebykova; Simon Kerridge; Jennifer Hill; Helena B. Thomaides-Brears; Christoph J. Blohmke; Ly-Mee Yu; Brian Angus; Andrew J. Pollard
Summary Background Salmonella enterica serovar Typhi (S Typhi) is responsible for an estimated 20 million infections and 200 000 deaths each year in resource poor regions of the world. Capsular Vi-polysaccharide-protein conjugate vaccines (Vi-conjugate vaccines) are immunogenic and can be used from infancy but there are no efficacy data for the leading candidate vaccine being considered for widespread use. To address this knowledge gap, we assessed the efficacy of a Vi-tetanus toxoid conjugate vaccine using an established human infection model of S Typhi. Methods In this single-centre, randomised controlled, phase 2b study, using an established outpatient-based human typhoid infection model, we recruited healthy adult volunteers aged between 18 and 60 years, with no previous history of typhoid vaccination, infection, or prolonged residency in a typhoid-endemic region. Participants were randomly assigned (1:1:1) to receive a single dose of Vi-conjugate (Vi-TT), Vi-polysaccharide (Vi-PS), or control meningococcal vaccine with a computer-generated randomisation schedule (block size 6). Investigators and participants were masked to treatment allocation, and an unmasked team of nurses administered the vaccines. Following oral ingestion of S Typhi, participants were assessed with daily blood culture over a 2-week period and diagnosed with typhoid infection when meeting pre-defined criteria. The primary endpoint was the proportion of participants diagnosed with typhoid infection (ie, attack rate), defined as persistent fever of 38°C or higher for 12 h or longer or S Typhi bacteraemia, following oral challenge administered 1 month after Vi-vaccination (Vi-TT or Vi-PS) compared with control vaccination. Analysis was per protocol. This trial is registered with ClinicalTrials.gov, number NCT02324751, and is ongoing. Findings Between Aug 18, 2015, and Nov 4, 2016, 112 participants were enrolled and randomly assigned; 34 to the control group, 37 to the Vi-PS group, and 41 to the Vi-TT group. 103 participants completed challenge (31 in the control group, 35 in the Vi-PS group, and 37 in the Vi-TT group) and were included in the per-protocol population. The composite criteria for typhoid diagnosis was met in 24 (77%) of 31 participants in the control group, 13 (35%) of 37 participants in the Vi-TT group, and 13 (35%) of 35 participants in the Vi-PS group to give vaccine efficacies of 54·6% (95% CI 26·8–71·8) for Vi-TT and 52·0% (23·2–70·0) for Vi-PS. Seroconversion was 100% in Vi-TT and 88·6% in Vi-PS participants, with significantly higher geometric mean titres detected 1-month post-vaccination in Vi-TT vaccinees. Four serious adverse events were reported during the conduct of the study, none of which were related to vaccination (one in the Vi-TT group and three in the Vi-PS group). Interpretation Vi-TT is a highly immunogenic vaccine that significantly reduces typhoid fever cases when assessed using a stringent controlled model of typhoid infection. Vi-TT use has the potential to reduce both the burden of typhoid fever and associated health inequality. Funding The Bill & Melinda Gates Foundation and the European Commission FP7 grant, Advanced Immunization Technologies (ADITEC).
Clinical Infectious Diseases | 2017
H C Dobinson; Malick Gibani; Claire Jones; H B Thomaides-Brears; Merryn Voysey; Thomas C. Darton; Claire S. Waddington; D Campbell; I Milligan; L Zhou; S Shrestha; S A Kerridge; A Peters; Z Stevens; Audino Podda; Laura B. Martin; F Dalessio; Duy Pham Thanh; Buddha Basnyat; Stephen Baker; Brian Angus; Myron M. Levine; Christoph J. Blohmke; Andrew J. Pollard
Summary The safe establishment of a protocol for a human challenge model for Salmonella Paratyphi A can be used to expedite the evaluation of novel vaccine candidates and provides insight into the clinical and immune response to paratyphoid infection.
Clinical and Vaccine Immunology | 2017
Serena Giuntini; Eduardo Lujan; Malick Gibani; Christina Dold; Christine S. Rollier; Andrew J. Pollard; Dan M. Granoff
ABSTRACT MenB-4C is a meningococcal vaccine for the prevention of serogroup B disease. The vaccine contains factor H binding protein (FHbp) and three other antigens that can elicit serum bactericidal antibodies (SBA). For vaccine licensure, efficacy was inferred from the SBA responses against three antigen-specific indicator strains. The relation between those results and broad protection against circulating genetically diverse strains is not known. Twenty adults were immunized with two doses of MenB-4C given 1 to 2 months apart. SBA activity against 3 reference strains and 15 serogroup B test strains (6 from college outbreaks) was measured. Compared to the preimmunization titers, 70%, 95%, and 95% of subjects had ≥4-fold increases in the titers of anti-PorA P1.4, anti-NadA, and anti-FHbp antibodies against the reference strains, respectively. In contrast, only 25 to 45% of the subjects had ≥4-fold increases in responses to 10 of the 15 test strains, including 8 that expressed one to three of the antigens in the vaccine. At 1 month, the majority of subjects with <4-fold titer increases had serum titers of ≥1:4, which are considered sufficient for protection. However, the titers against four strains declined to <1:4 by 4 to 6 months in one-third to greater than 50% of the subjects tested. Clinically relevant isolates are often more resistant to SBA than the indicator strains used to measure antigen-specific SBA. A working model is that the percentage of subjects with titers of ≥1:4 at 1 month postimmunization correlates with short-term protection against that strain, whereas the percentage of subjects with ≥4-fold titer increases represents a more robust response. (The protocol used at the Oxford Vaccine Group has been registered at ClinicalTrials.gov under registration no. NCT02398396.)
Vaccine | 2017
James Meiring; Malick Gibani
Typhoid fever is estimated to cause between 11.9-26.9 million infections globally each year with 129,000-216,510 deaths. Access to improved water sources have reduced disease incidence in parts of the world but the use of efficacious vaccines is seen as an important public health tool for countries with a high disease burden. A new generation of Vi typhoid conjugate vaccines (TCVs), licensed for use in young children and expected to provide longer lasting protection than previous vaccines, are now available. The WHO Strategic Advisory Group of Experts on Immunization (SAGE) has convened a working group to review the evidence on TCVs and produce an updated WHO position paper for all typhoid vaccines in 2018 that will inform Gavi, the Vaccine Alliances future vaccine investment strategies for TCVs. The Typhoid Vaccine Acceleration Consortium (TyVAC) has been formed through a
Clinical Infectious Diseases | 2015
Malick Gibani; Celina Jin; Thomas C. Darton; Andrew J. Pollard
36.9 million funding program from the Bill & Melinda Gates Foundation to accelerate the introduction of TCVs into Gavi-eligible countries. In October 2016, a meeting was held to initiate planning of TCV effectiveness studies that will provide the data required by policy makers and stakeholders to support decisions on TCV use in countries with a high typhoid burden. Discussion topics included (1) the latest evidence and data gaps in typhoid epidemiology; (2) WHO and Gavi methods and data requirements; (3) data on TCV efficacy; (4) cost effectiveness analysis for TCVs from mathematical models; (5) TCV delivery and effectiveness study design. Specifically, participants were asked to comment on study design in 3 sites for which population-based typhoid surveillance is underway. The conclusion of the meeting was that country-level decision making would best be informed by the respective selected sites in Africa and Asia vaccinating children aged from 9-months to 15-years-old, employing either an individual or cluster randomized design with design influenced by population characteristics, transmission dynamics, and statistical considerations.
Wellcome Open Research | 2017
Stephen B. Gordon; Jamie Rylance; Amy Luck; Kondwani C. Jambo; Daniela M. Ferreira; Lucinda Manda-Taylor; Philip Bejon; Bagrey Ngwira; Katherine Littler; Zoe Seager; Malick Gibani; Markus Gmeiner; Meta Roestenberg; Yohannie Mlombe
Invasive Salmonella disease in Africa is a major public health concern. With evidence of the transcontinental spread of the Salmonella Typhi H58 haplotype, improved estimates of the burden of infection and understanding of the complex interplay of factors affecting disease transmission are needed to assist with efforts aimed at disease control. In addition to Salmonella Typhi, invasive nontyphoidal Salmonella are increasingly recognized as an important cause of febrile illness and mortality in sub-Saharan Africa. Human experimental oral challenge studies with Salmonella can be used as a model to offer unique insights into host–pathogen interactions as well as a platform to efficiently test new diagnostic and vaccine candidates. In this article, we review the background and use of human challenge studies to date and discuss how findings from these studies may lead to progress in the control of invasive Salmonella disease in Africa.
PLOS ONE | 2016
Liqing Zhou; Claire Jones; Malick Gibani; Hazel Dobinson; Helena B. Thomaides-Brears; Sonu Shrestha; Christoph J. Blohmke; Thomas C. Darton; Andrew J. Pollard
Controlled human infection model (CHIM) studies have pivotal importance in vaccine development, being useful for proof of concept, pathogenesis, down-selection and immunogenicity studies. To date, however, they have seldom been carried out in low and middle income countries (LMIC), which is where the greatest burden of vaccine preventable illness is found. This workshop discussed the benefits and barriers to CHIM studies in Malawi. Benefits include improved vaccine effectiveness and host country capacity development in clinical, laboratory and governance domains. Barriers include acceptability, safety and regulatory issues. The report suggests a framework by which ethical, laboratory, scientific and governance issues may be addressed by investigators considering or planning CHIM in LMIC.
Practical Neurology | 2014
Malick Gibani; Jonathan M Hoare; Carol J. Whelan; Jason Dungu; Janet A. Gilbertson; Carolyn Gabriel
Background Enteric fever remains an important cause of morbidity in many low-income countries and Salmonella Paratyphi A has emerged as the aetiological agent in an increasing proportion of cases. Lack of adequate diagnostics hinders early diagnosis and prompt treatment of both typhoid and paratyphoid but development of assays to identify paratyphoid has been particularly neglected. Here we describe the development of a rapid and sensitive blood culture PCR method for detection of Salmonella Paratyphi A from blood, potentially allowing for appropriate diagnosis and antimicrobial treatment to be initiated on the same day. Methods Venous blood samples from volunteers experimentally challenged orally with Salmonella Paratyphi A, who subsequently developed paratyphoid, were taken on the day of diagnosis; 10 ml for quantitative blood culture and automated blood culture, and 5 ml for blood culture PCR. In the latter assay, bacteria were grown in tryptone soy broth containing 2.4% ox bile and micrococcal nuclease for 5 hours (37°C) before bacterial DNA was isolated for PCR detection targeting the fliC-a gene of Salmonella Paratyphi A. Results An optimized broth containing 2.4% ox bile and micrococcal nuclease, as well as a PCR test was developed for a blood culture PCR assay of Salmonella Paratyphi A. The volunteers diagnosed with paratyphoid had a median bacterial burden of 1 (range 0.1–6.9) CFU/ml blood. All the blood culture PCR positive cases where a positive bacterial growth was shown by quantitative blood culture had a bacterial burden of ≥ 0.3 CFU/ ml blood. The blood culture PCR assay identified an equal number of positive cases as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood), but utilized only half the volume of specimens. Conclusions The blood culture PCR method for detection of Salmonella Paratyphi A can be completed within 9 hours and offers the potential for same-day diagnosis of enteric fever. Using 5 ml blood, it exhibited a lower limit of detection equal to 0.3 CFU/ml blood, and it performed at least as well as automated blood culture at higher bacterial loads (≥0.3 CFU/ml blood) of clinical specimens despite using half the volume of blood. The findings warrant its further study in endemic populations with a potential use as a novel diagnostic which fills the present gap of paratyphoid diagnostics.