Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malte Wachsmuth is active.

Publication


Featured researches published by Malte Wachsmuth.


Journal of Cell Science | 2004

Trichostatin A-induced histone acetylation causes decondensation of interphase chromatin

Katalin Fejes Tóth; Tobias A. Knoch; Malte Wachsmuth; Monika Frank-Stöhr; Michael Stöhr; Christian P. Bacher; Gabriele Müller; Karsten Rippe

The effect of trichostatin A (TSA)-induced histone acetylation on the interphase chromatin structure was visualized in vivo with a HeLa cell line stably expressing histone H2A, which was fused to enhanced yellow fluorescent protein. The globally increased histone acetylation caused a reversible decondensation of dense chromatin regions and led to a more homogeneous distribution. These structural changes were quantified by image correlation spectroscopy and by spatially resolved scaling analysis. The image analysis revealed that a chromatin reorganization on a length scale from 200 nm to >1 μm was induced consistent with the opening of condensed chromatin domains containing several Mb of DNA. The observed conformation changes could be assigned to the folding of chromatin during G1 phase by characterizing the effect of TSA on cell cycle progression and developing a protocol that allowed the identification of G1 phase cells on microscope coverslips. An analysis by flow cytometry showed that the addition of TSA led to a significant arrest of cells in S phase and induced apoptosis. The concentration dependence of both processes was studied.


Journal of Cell Science | 2005

Histone acetylation increases chromatin accessibility

Sabine M. Görisch; Malte Wachsmuth; Katalin Fejes Tóth; Peter Lichter; Karsten Rippe

In eukaryotes, the interaction of DNA with proteins and supramolecular complexes involved in gene expression is controlled by the dynamic organization of chromatin inasmuch as it defines the DNA accessibility. Here, the nuclear distribution of microinjected fluorescein-labeled dextrans of 42 kDa to 2.5 MDa molecular mass was used to characterize the chromatin accessibility in dependence on histone acetylation. Measurements of the fluorescein-dextran sizes were combined with an image correlation spectroscopy analysis, and three different interphase chromatin condensation states with apparent pore sizes of 16-20 nm, 36-56 nm and 60-100 nm were identified. A reversible change of the chromatin conformation to a uniform 60-100 nm pore size distribution was observed upon increased histone acetylation. This result identifies histone acetylation as a central factor in the dynamic regulation of chromatin accessibility during interphase. In mitotic chromosomes, the chromatin exclusion limit was 10-20 nm and independent of the histone acetylation state.


Biophysical Journal | 2003

Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching

Malte Wachsmuth; Thomas Weidemann; Gabriele Müller; Urs Hoffmann-Rohrer; Tobias A. Knoch; Waldemar Waldeck; Jörg Langowski

Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.


Nature Biotechnology | 2011

Quantitative fluorescence imaging of protein diffusion and interaction in living cells

Jérémie Capoulade; Malte Wachsmuth; Lars Hufnagel; Michael Knop

Diffusion processes and local dynamic equilibria inside cells lead to nonuniform spatial distributions of molecules, which are essential for processes such as nuclear organization and signaling in cell division, differentiation and migration. To understand these mechanisms, spatially resolved quantitative measurements of protein abundance, mobilities and interactions are needed, but current methods have limited capabilities to study dynamic parameters. Here we describe a microscope based on light-sheet illumination that allows massively parallel fluorescence correlation spectroscopy (FCS) measurements and use it to visualize the diffusion and interactions of proteins in mammalian cells and in isolated fly tissue. Imaging the mobility of heterochromatin protein HP1α (ref. 4) in cell nuclei we could provide high-resolution diffusion maps that reveal euchromatin areas with heterochromatin-like HP1α-chromatin interactions. We expect that FCS imaging will become a useful method for the precise characterization of cellular reaction-diffusion processes.


Nature Biotechnology | 2012

Tandem fluorescent protein timers for in vivo analysis of protein dynamics

Anton Khmelinskii; Philipp J. Keller; Anna Bartosik; Matthias Meurer; Joseph D. Barry; Balca R. Mardin; Andreas Kaufmann; Susanne Trautmann; Malte Wachsmuth; Gislene Pereira; Wolfgang Huber; Elmar Schiebel; Michael Knop

The functional state of a cell is largely determined by the spatiotemporal organization of its proteome. Technologies exist for measuring particular aspects of protein turnover and localization, but comprehensive analysis of protein dynamics across different scales is possible only by combining several methods. Here we describe tandem fluorescent protein timers (tFTs), fusions of two single-color fluorescent proteins that mature with different kinetics, which we use to analyze protein turnover and mobility in living cells. We fuse tFTs to proteins in yeast to study the longevity, segregation and inheritance of cellular components and the mobility of proteins between subcellular compartments; to measure protein degradation kinetics without the need for time-course measurements; and to conduct high-throughput screens for regulators of protein turnover. Our experiments reveal the stable nature and asymmetric inheritance of nuclear pore complexes and identify regulators of N-end rule–mediated protein degradation.


Nature Structural & Molecular Biology | 2005

A 'loop recapture' mechanism for ACF-dependent nucleosome remodeling

Ralf Strohner; Malte Wachsmuth; Karoline Dachauer; Jacek Mazurkiewicz; Julia Hochstatter; Karsten Rippe; Gernot Längst

The ATPase ISWI is the molecular motor of several nucleosome remodeling complexes including ACF. We analyzed the ACF-nucleosome interactions and determined the characteristics of ACF-dependent nucleosome remodeling. In contrast to ISWI, ACF interacts symmetrically with DNA entry sites of the nucleosome. Two-color fluorescence cross-correlation spectroscopy measurements show that ACF can bind four DNA duplexes simultaneously in a complex that contains two Acf1 and ISWI molecules. Using bead-bound nucleosomal substrates, nucleosome movement by mechanisms involving DNA twisting was excluded. Furthermore, an ACF-dependent local detachment of DNA from the nucleosome was demonstrated in a novel assay based on the preferred intercalation of ethidium bromide to free DNA. The findings suggest a loop recapture mechanism in which ACF introduces a DNA loop at the nucleosomal entry site that propagates over the histone octamer surface and leads to nucleosome repositioning.


Journal of Molecular Biology | 2002

A biological transporter for the delivery of peptide nucleic acids (PNAs) to the nuclear compartment of living cells.

Klaus Braun; Peter Peschke; Rüdiger Pipkorn; Stefan Lampel; Malte Wachsmuth; Waldemar Waldeck; Eckhard Friedrich; Jürgen Debus

To facilitate nuclear delivery of biomolecules we describe the synthesis of a modular transporter bearing a cellular membrane transport peptide (pAntp) and, as a cargo, a 16-mer peptide nucleic acid (PNA) covalently linked to a nuclear localisation signal (NLS[SV40-T]). Transport peptide and PNA are connected via N-terminal activated cysteine to form cleavable disulphide bonds. Internalization and subsequent delivery of PNA to the nucleus was verified in living and fixed cells by confocal laser scanning microscopy (CLSM) and fluorescence correlation spectroscopy (FCS). Double-labelling experiments indicate the cytoplasmic cleavage of the two modules and the effective nuclear import of the chromophore-tagged cargo. A non-degradable linker between transport module and cargo as well as a construct without NLS did not enable nuclear PNA import under the described experimental conditions. FCS-measurements revealed that most of the PNAs delivered into the cytoplasm by the modular transporter are anchored or encapsulated, indicating that intracellular transport of these compounds is not governed by molecular diffusion. Our results clearly demonstrate efficient compartment-directed transport using a synthetic, non-toxic modular transporter in living cells.


Molecular Biology of the Cell | 2009

Dynamics of Telomeres and Promyelocytic Leukemia Nuclear Bodies in a Telomerase-negative Human Cell Line

Thibaud Jegou; Inn Chung; Gerrit Heuvelman; Malte Wachsmuth; Sabine M. Görisch; Karin M. Greulich-Bode; Petra Boukamp; Peter Lichter; Karsten Rippe

Telomerase-negative tumor cells maintain their telomeres via an alternative lengthening of telomeres (ALT) mechanism. This process involves the association of telomeres with promyelocytic leukemia nuclear bodies (PML-NBs). Here, the mobility of both telomeres and PML-NBs as well as their interactions were studied in human U2OS osteosarcoma cells, in which the ALT pathway is active. A U2OS cell line was constructed that had lac operator repeats stably integrated adjacent to the telomeres of chromosomes 6q, 11p, and 12q. By fluorescence microscopy of autofluorescent LacI repressor bound to the lacO arrays the telomere mobility during interphase was traced and correlated with the telomere repeat length. A confined diffusion model was derived that describes telomere dynamics in the nucleus on the time scale from seconds to hours. Two telomere groups were identified that differed with respect to the nuclear space accessible to them. Furthermore, translocations of PML-NBs relative to telomeres and their complexes with telomeres were evaluated. Based on these studies, a model is proposed in which the shortening of telomeres results in an increased mobility that could facilitate the formation of complexes between telomeres and PML-NBs.


Biochimica et Biophysica Acta | 2008

Genome organization: Balancing stability and plasticity

Malte Wachsmuth; Maïwen Caudron-Herger; Karsten Rippe

The cell needs to stably maintain its genome and protect it from uncontrolled modifications that would compromise its function. At the same time, the genome has to be a plastic structure that can dynamically (re)organize to allow the cell to adopt different functional states. These dynamics occur on the nanometer to micrometer length scale, i.e. ranging from the level of single proteins up to that of whole chromosomes, and on a microsecond to hour time scale. Here, we review different contributions to the dynamic features of the genome, describe how they are determined experimentally, and discuss the results of these measurements in terms of how the requirements for stability and plasticity are accommodated with specific activities in the nucleus.


Single Molecules | 2002

Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy

Thomas Weidemann; Malte Wachsmuth; Michael Tewes; Karsten Rippe; Jörg Langowski

Fluorescence correlation spectroscopy (FCS) is a well-established method for the analysis of freely diffusing fluorescent particles in solution. In a two-colour setup, simultaneous detection of two different dyes allows the acquisition of both the autocorrelation of the signal of each channel and the cross-correlation of the two channels (fluorescence cross-correlation spectroscopy, FCCS). The cross-correlation function is related to the amount of diffusing particles carrying both dyes and can be used for monitoring a binding reaction. Here we develop a formalism for a quantitative analysis of ligand binding from a combination of the auto- and the cross-correlation amplitudes. Technical constraints, like the focal geometry, background signal and cross-talk between the detection channels as well as photophysical and biochemical effects which modulate the brightness of the particles are included in the analysis. Based on this framework a comprehensive treatment for the determination of two-component binding equilibria by FCS/FCCS is presented.

Collaboration


Dive into the Malte Wachsmuth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Langowski

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Ellenberg

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Birgit Koch

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabian Erdel

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Gabriele Müller

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge