Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Malwina Suszynska is active.

Publication


Featured researches published by Malwina Suszynska.


Leukemia | 2014

Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate.

Mariusz Z. Ratajczak; Ewa K. Zuba-Surma; Wojtek Wojakowski; Malwina Suszynska; Katarzyna Mierzejewska; R Liu; Janina Ratajczak; Magdalena Kucia

The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.


Leukemia | 2014

Novel evidence that crosstalk between the complement, coagulation and fibrinolysis proteolytic cascades is involved in mobilization of hematopoietic stem/progenitor cells (HSPCs).

Sylwia Borkowska; Malwina Suszynska; Katarzyna Mierzejewska; A Ismail; Marta Budkowska; Daria Sałata; Barbara Dołęgowska; Magdalena Kucia; Janina Ratajczak; Mariusz Z. Ratajczak

The role of blood proteinases in the mobilization of hematopoietic stem/progenitor cells (HSPCs) is still not well understood. As previously reported, activation of the complement cascade (ComC) and cleavage of C5 by C5 convertase are enabling events in the release of C5a that plays a crucial role in the egress of HSPCs from bone marrow (BM) into peripheral blood (PB) and explains why C5-deficient mice are poor mobilizers. Here we provide evidence that during granulocyte colony-stimulating factor- and AMD3100-induced mobilization, not only the ComC but also two other evolutionarily ancient proteolytic enzyme cascades, the coagulation cascade (CoaC) and the fibrynolytic cascade (FibC), become activated. Activation of all three cascades was measured by generation of C5a, decrease in prothrombin time and activated partial thromboplastin time as well as an increase in the concentrations of plasmin/antiplasmin and thrombin/antithrombin. More importantly, the CoaC and FibC, by generating thrombin and plasmin, respectively, provide C5 convertase activity, explaining why mobilization of HSPCs in C3-deficient mice, which do not generate ComC-generated C5a convertase, is not impaired. Our observations shed more light on how the CoaC and FibC modulate stem cell mobilization and may lead to the development of more efficient mobilization strategies in poor mobilizers. Furthermore, as it is known that all these cascades are activated in all the situations in which HSPCs are mobilized from BM into PB (for example, infections, tissue/organ damage or strenuous exercise) and show a circadian rhythm of activation, they must be involved in both stress-induced and circadian changes in HSPC trafficking in PB.


Advances in Medical Sciences | 2012

Pluripotent and multipotent stem cells in adult tissues.

Mariusz Z. Ratajczak; Ewa K. Zuba-Surma; Magdalena Kucia; Agata Poniewierska; Malwina Suszynska; Janina Ratajczak

One of the most intriguing questions in stem cell biology is whether pluripotent stem cells exist in adult tissues. Several groups of investigators employing i) various isolation protocols, ii) detection of surface markers, and iii) experimental in vitro and in vivo models, have reported the presence of cells that possess a pluripotent character in adult tissues. Such cells were assigned various operational abbreviations and names in the literature that added confusion to the field and raised the basic question of whether these are truly distinct or overlapping populations of the same primitive stem cells. Unfortunately, these cells were never characterized side-by-side to address this important issue. Nevertheless, taking into consideration their common features described in the literature, it is very likely that various investigators have described overlapping populations of developmentally early stem cells that are closely related. These different populations of stem cells will be reviewed in this paper.


Stem Cells and Development | 2015

Hematopoietic Stem/Progenitor Cells Express Several Functional Sex Hormone Receptors—Novel Evidence for a Potential Developmental Link Between Hematopoiesis and Primordial Germ Cells

Katarzyna Mierzejewska; Sylwia Borkowska; Ewa Suszynska; Malwina Suszynska; Agata Poniewierska-Baran; Magda Maj; Daniel Pedziwiatr; Mateusz Adamiak; Ahmed Abdel-Latif; Sham S. Kakar; Janina Ratajczak; Magda Kucia; Mariusz Z. Ratajczak

Evidence has accumulated that hematopoietic stem progenitor cells (HSPCs) share several markers with the germline, a connection supported by reports that prolactin, androgens, and estrogens stimulate hematopoiesis. To address this issue more directly, we tested the expression of receptors for pituitary-derived hormones, such as follicle-stimulating hormone (FSH) and luteinizing hormone (LH), on purified murine bone marrow (BM) cells enriched for HSPCs and tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. We also tested whether administration of pituitary- and gonad-derived sex hormones (SexHs) increases incorporation of bromodeoxyuridine (BrdU) into HSPCs and expansion of hematopoietic clonogenic progenitors in mice and promotes recovery of blood counts in sublethally irradiated animals. We report for the first time that HSPCs express functional FSH and LH receptors and that both proliferate in vivo and in vitro in response to stimulation by pituitary SexHs. Furthermore, based on our observations that at least some of CD45(-) very small embryonic-like stem cells (VSELs) may become specified into CD45(+) HSPCs, we also evaluated the expression of pituitary and gonadal SexHs receptors on these cells and tested whether these quiescent cells may expand in vivo in response to SexHs administration. We found that VSELs express SexHs receptors and respond in vivo to SexHs stimulation, as evidenced by BrdU accumulation. Since at least some VSELs share several markers characteristic of migrating primordial germ cells and can be specified into HSPCs, this observation sheds new light on the BM stem cell hierarchy.


Expert Opinion on Therapeutic Targets | 2014

The role of sphingosine-1 phosphate and ceramide-1 phosphate in trafficking of normal stem cells and cancer cells

Mariusz Z. Ratajczak; Malwina Suszynska; Sylwia Borkowska; Janina Ratajczak; Gabriela Schneider

Introduction: A common feature of many types of cells is their responsiveness to chemotactic gradients of factors for which they express the corresponding receptors. The most studied chemoattractants so far are peptide-based growth factors and a family of cytokines endowed with strong chemotactic properties, called chemokines. However, additional evidence has accumulated that, in addition to these peptide-based chemoattractants, an important role in cell migration is played by bioactive lipids. Areas covered: Solid evidence has accumulated that two bioactive phosphorylated sphingolipids that are derivatives of sphingolipid metabolism, namely sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), are potent chemoattractants for a variety of cells. In this review, we will discuss the effect of these two phosphorylated sphingolipids on the trafficking of normal and malignant cells, and, in particular, we will focus on their role in trafficking of normal hematopoietic stem/progenitor cells. Unlike other mediators, S1P under steady-state conditions maintain a steep gradient between interstitial fluid and peripheral blood and lymph across the endothelial barrier, which is important in the egress of cells from bone marrow. Both S1P and C1P may be upregulated in damaged tissues, which may result in reversal of this gradient. Expert opinion: S1P and C1P are important regulators of the trafficking of normal and malignant cells, and modification of their biological effects will have important applications in optimizing stem cell mobilization and homing, tissue organ/regeneration, and preventing cancer metastasis.


Circulation Research | 2017

A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells

Mariusz Z. Ratajczak; Janina Ratajczak; Malwina Suszynska; Donald M. Miller; Magda Kucia

Evidence has accumulated that adult hematopoietic tissues and other organs contain a population of dormant stem cells (SCs) that are more primitive than other, already restricted, monopotent tissue-committed SCs (TCSCs). These observations raise several questions, such as the developmental origin of these cells, their true pluripotent or multipotent nature, which surface markers they express, how they can be efficiently isolated from adult tissues, and what role they play in the adult organism. The phenotype of these cells and expression of some genes characteristic of embryonic SCs, epiblast SCs, and primordial germ cells suggests their early-embryonic deposition in developing tissues as precursors of adult SCs. In this review, we will critically discuss all these questions and the concept that small dormant SCs related to migratory primordial germ cells, described as very small embryonic-like SCs, are deposited during embryogenesis in bone marrow and other organs as a backup population for adult tissue-committed SCs and are involved in several processes related to tissue or organ rejuvenation, aging, and cancerogenesis. The most recent results on successful ex vivo expansion of human very small embryonic-like SC in chemically defined media free from feeder-layer cells open up new and exciting possibilities for their application in regenerative medicine.


Stem Cell Reviews and Reports | 2016

Emerging Strategies to Enhance Homing and Engraftment of Hematopoietic Stem Cells

Mariusz Z. Ratajczak; Malwina Suszynska

Successful clinical outcomes from transplantation of hematopoietic stem cells (HSCs) depend upon efficient HSC homing to bone marrow (BM), subsequent engraftment, and, finally, BM repopulation. Homing of intravenously administered HSCs from peripheral blood (PB) through the circulation to the BM stem cell niches, which is the first critical step that precedes their engraftment, is enforced by chemotactic factors released in the BM microenvironment that chemoattract HSCs. These chemotactic factors include α-chemokine stromal-derived factor 1 (SDF-1), the bioactive phosphosphingolipids sphingosine-1-phosphate (S1P) and ceramid-1-phosphate (C1P), and the extracellular nucleotides ATP and UTP. Stem cells may also respond to a Ca2+ or H+ gradient by employing calcium- or proton-sensing receptors, respectively. In this review, we will present emerging strategies based on ex vivo manipulation of graft HSCs that are aimed at enhancing the responsiveness of HSCs to BM-secreted chemoattractants and/or promoting HSC adhesion and seeding efficiency in the BM microenvironment.


Stem Cells and Development | 2014

The Proper Criteria for Identification and Sorting of Very Small Embryonic-Like Stem Cells, and Some Nomenclature Issues

Malwina Suszynska; Ewa K. Zuba-Surma; Magdalena Maj; Kasia Mierzejewska; Janina Ratajczak; Magda Kucia; Mariusz Z. Ratajczak

Evidence has accumulated that both murine and human adult tissues contain early-development stem cells with a broader differentiation potential than other adult monopotent stem cells. These cells, being pluripotent or multipotent, exist at different levels of specification and most likely represent overlapping populations of cells that, depending on the isolation strategy, ex vivo expansion protocol, and markers employed for their identification, have been given different names. In this review, we will discuss a population of very small embryonic-like stem cells (VSELs) in the context of other stem cells that express pluripotent/multipotent markers isolated from adult tissues as well as review the most current, validated working criteria on how to properly identify and isolate these very rare cells. VSELs have been successfully purified in several laboratories; however, a few have failed to isolate them, which has raised some unnecessary controversy in the field. Therefore, in this short review, we will address the most important reasons that some investigators have experienced problems in isolating these very rare cells and discuss some still unresolved challenges which should be overcome before these cells can be widely employed in the clinic.


Journal of Ovarian Research | 2014

Expression of the erythropoietin receptor by germline-derived cells - further support for a potential developmental link between the germline and hematopoiesis

Malwina Suszynska; Agata Poniewierska-Baran; Pranesh Gunjal; Janina Ratajczak; Krzysztof Marycz; Sham S. Kakar; Magda Kucia; Mariusz Z. Ratajczak

BackgroundExpressing several markers of migrating primordial germ cells (PGCs), the rare population of quiescent, bone marrow (BM)-residing very small embryonic-like stem cells (VSELs) can be specified like PGCs into hematopoietic stem/progenitor cells (HSPCs). These two properties of VSELs support the possibility of a developmental origin of HSPCs from migrating PGCs.MethodsTo address a potential link between VSELs and germ line cells we analyzed by RT-PCR and FACS expression of erythropoietin receptor (EpoR) on murine bone marrow- and human umbilical cord blood-derived VSELs, murine and human teratocarcinoma cell lines and human ovarian cancer cells. A proper gating strategy and immunostaining excluded from FACS analysis potential contamination by erythroblasts. Furthermore, the transwell chemotaxis assays as well as adhesion and signaling studies were performed to demonstrate functionality of erythropoietin - EpoR axes on these cells.ResultsWe report here that murine and human VSELs as well as murine and human teratocarcinoma cell lines and ovarian cancer cell lines share a functional EpoR.ConclusionsOur data provide more evidence of a potential developmental link between germline cells, VSELs, and HSCs and sheds more light on the developmental hierarchy of the stem cell compartment in adult tissues.


Journal of Cellular and Molecular Medicine | 2016

Human haematopoietic stem/progenitor cells express several functional sex hormone receptors.

Ahmed Abdelbaset-Ismail; Malwina Suszynska; Sylwia Borkowska; Mateusz Adamiak; Janina Ratajczak; Magda Kucia; Mariusz Z. Ratajczak

Evidence has accumulated that murine haematopoietic stem/progenitor cells (HSPCs) share several markers with the germline, a connection supported by recent reports that pituitary and gonadal sex hormones (SexHs) regulate development of murine HSPCs. It has also been reported that human HSPCs, like their murine counterparts, respond to certain SexHs (e.g. androgens). However, to better address the effects of SexHs, particularly pituitary SexHs, on human haematopoiesis, we tested for expression of receptors for pituitary SexHs, including follicle‐stimulating hormone (FSH), luteinizing hormone (LH), and prolactin (PRL), as well as the receptors for gonadal SexHs, including progesterone, oestrogens, and androgen, on HSPCs purified from human umbilical cord blood (UCB) and peripheral blood (PB). We then tested the functionality of these receptors in ex vivo signal transduction studies and in vitro clonogenic assays. In parallel, we tested the effect of SexHs on human mesenchymal stromal cells (MSCs). Finally, based on our observation that at least some of the UCB‐derived, CD45− very small embryonic‐like stem cells (VSELs) become specified into CD45+ HSPCs, we also evaluated the expression of pituitary and gonadal SexH receptors on these cells. We report for the first time that human HSPCs and VSELs, like their murine counterparts, express pituitary and gonadal SexH receptors at the mRNA and protein levels. Most importantly, SexH if added to suboptimal doses of haematopoietic cytokines and growth factors enhance clonogenic growth of human HSPCs as well as directly stimulate proliferation of MSCs.

Collaboration


Dive into the Malwina Suszynska's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Magda Kucia

University of Louisville

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge