Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mamata Kombrabail is active.

Publication


Featured researches published by Mamata Kombrabail.


Journal of Biological Chemistry | 2011

Nature of the Amyloid-β Monomer and the Monomer-Oligomer Equilibrium

Suman Nag; Bidyut Sarkar; Arkarup Bandyopadhyay; Bankanidhi Sahoo; Varun K. A. Sreenivasan; Mamata Kombrabail; Chandrakesan Muralidharan; Sudipta Maiti

The monomer to oligomer transition initiates the aggregation and pathogenic transformation of Alzheimer amyloid-β (Aβ) peptide. However, the monomeric state of this aggregation-prone peptide has remained beyond the reach of most experimental techniques, and a quantitative understanding of this transition is yet to emerge. Here, we employ single-molecule level fluorescence tools to characterize the monomeric state and the monomer-oligomer transition at physiological concentrations in buffers mimicking the cerebrospinal fluid (CSF). Our measurements show that the monomer has a hydrodynamic radius of 0.9 ± 0.1 nm, which confirms the prediction made by some of the in silico studies. Surprisingly, at equilibrium, both Aβ40 and Aβ42 remain predominantly monomeric up to 3 μm, above which it forms large aggregates. This concentration is much higher than the estimated concentrations in the CSF of either normal or diseased brains. If Aβ oligomers are present in the CSF and are the key agents in Alzheimer pathology, as is generally believed, then these must be released in the CSF as preformed entities. Although the oligomers are thermodynamically unstable, we find that a large kinetic barrier, which is mostly entropic in origin, strongly impedes their dissociation. Thermodynamic principles therefore allow the development of a pharmacological agent that can catalytically convert metastable oligomers into nontoxic monomers.


Journal of Physical Chemistry B | 2011

Oligomerization of the Serotonin1A Receptor in Live Cells: A Time-Resolved Fluorescence Anisotropy Approach

Yamuna Devi Paila; Mamata Kombrabail; G. Krishnamoorthy; Amitabha Chattopadhyay

The serotonin(1A) receptor is a representative member of the G-protein coupled receptor (GPCR) superfamily and serves as an important target in the development of therapeutic agents for neuropsychiatric disorders. Oligomerization of GPCRs is an important contemporary issue since it is believed to be a crucial determinant for cellular signaling. In this work, we monitored the oligomerization status of the serotonin(1A) receptor tagged to enhanced yellow fluorescent protein (5-HT(1A)R-EYFP) in live cells utilizing time-resolved fluorescence anisotropy decay. We interpret the unresolved fast component of the observed anisotropy decay as fluorescence resonance energy transfer (FRET) between 5-HT(1A)R-EYFP molecules (homo-FRET). Homo-FRET enjoys certain advantages over hetero-FRET in the analysis of receptor oligomerization. Our results reveal the presence of constitutive oligomers of the serotonin(1A) receptor in live cells. We further show that the oligomerization status of the receptor is independent of ligand stimulation and sphingolipid depletion. Interestingly, acute (but not chronic) cholesterol depletion appears to enhance the oligomerization process. Importantly, our results are independent of receptor expression level, thereby ruling out complications arising due to high expression. These results have potential implications in future therapeutic strategies in pathophysiological conditions in which serotonin(1A) receptors are implicated.


Journal of Biological Chemistry | 2014

Elucidating the role of disulfide bond on amyloid formation and fibril reversibility of somatostatin-14: Relevance to its storage and secretion

A. Anoop; Srivastav Ranganathan; Bhagwan Das Dhaked; Narendra Nath Jha; Supriya Pratihar; Saikat Kumar B. Ghosh; Shruti Sahay; Santosh Kumar; Subhadeep Das; Mamata Kombrabail; Kumud Agarwal; Reeba S. Jacob; Praful S. Singru; Prasenjit Bhaumik; Ranjith Padinhateeri; Ashutosh Kumar; Samir K. Maji

Background: Peptide/protein hormones are stored as amyloids within endocrine secretory granules. Results: Disulfide bond cleavage enhances conformational dynamics and aggregation kinetics in somatostatin-14, resulting in amyloid fibrils with increased resistance to denaturing conditions and decreased reversibility. Conclusion: Disulfide bond could be a key modulating factor in somatostatin-14 amyloid formation associated with secretory granule biogenesis. Significance: Defective disulfide bonding might cause dysregulation of hormone storage/secretion. The storage of protein/peptide hormones within subcellular compartments and subsequent release are crucial for their native function, and hence these processes are intricately regulated in mammalian systems. Several peptide hormones were recently suggested to be stored as amyloids within endocrine secretory granules. This leads to an apparent paradox where storage requires formation of aggregates, and their function requires a supply of non-aggregated peptides on demand. The precise mechanism behind amyloid formation by these hormones and their subsequent release remain an open question. To address this, we examined aggregation and fibril reversibility of a cyclic peptide hormone somatostatin (SST)-14 using various techniques. After proving that SST gets stored as amyloid in vivo, we investigated the role of native structure in modulating its conformational dynamics and self-association by disrupting the disulfide bridge (Cys3–Cys14) in SST. Using two-dimensional NMR, we resolved the initial structure of somatostatin-14 leading to aggregation and further probed its conformational dynamics in silico. The perturbation in native structure (S-S cleavage) led to a significant increase in conformational flexibility and resulted in rapid amyloid formation. The fibrils formed by disulfide-reduced noncyclic SST possess greater resistance to denaturing conditions with decreased monomer releasing potency. MD simulations reveal marked differences in the intermolecular interactions in SST and noncyclic SST providing plausible explanation for differential aggregation and fibril reversibility observed experimentally in these structural variants. Our findings thus emphasize that subtle changes in the native structure of peptide hormone(s) could alter its conformational dynamics and amyloid formation, which might have significant implications on their reversible storage and secretion.


Biochimica et Biophysica Acta | 1992

Monensin-mediated transports of H+, Na+, K+ and Li+ ions across vesicular membranes: T-jump studies

B.S. Prabhananda; Mamata Kombrabail

Theoretical expression for the rate of decay of delta pH across vesicular membrane due to carrier-mediated ion transports, 1/tau, has been modified taking note of carrier states (such as mon- and mon-H-M+) for which the translocation rate constants in the membrane are small. The rates of delta pH decay due to monensin-mediated H+ and M+ transports (M+ = Na+, K+, Li+) observed in our experiments in the pH range 6-8, and [M+] range 50-250 mM at 25 degrees C have been analysed with the help of this expression. delta pH across soybean phospholipid vesicular membranes were created by temperature jump in our experiments. The following could be inferred from our studies. (a) At low pH (approximately 6) 1/tau in a medium of Na+ is greater than that in a medium of K+. In contrast with this, at higher pH (approximately 7.5) 1/tau is greater in a medium of K+. Such contradictory observations could be understood with the help of our equation and the parameters determined in this work. The relative concentrations of the rate-limiting species (mon-H, mon-K, and mon-Li at Ph approximately 7 in vesicle solutions having Na+, K+ and Li+, respectively) can explain such behaviours. (b) The proton dissociation constant KH for mon-H in the lipid medium (pKH approximately 6.55) is larger than the reported KH in methanol. (c) The concentrations of mon- and mon-H-Na+ are not negligible under the conditions of our experiments. The latter species cause a [Na+]-dependent inhibition of ion transports. (d) The relative magnitudes of metal ion dissociation constants KHM (approximately 0.05 M) for mon-H-Na+ and KM (approximately 0.03 M) for mon-Na suggest that the carboxyl group involved in the protonation may not be dominantly involved in the metal ion complexation. (e) The estimates of KM (approximately 0.03 M for Na+, 0.5 M for K+ and 2.2 M for Li+) follow the ionophore selectivity order. (f) The rate constants k1 and k2 for the translocations of mon-H and mon-M (M+ = Na+, K+ and Li+) are similar in magnitude (approximately 9 x 10(3) s-1) and are higher than that for nig-H and nig-M (approximately 6 x 10(3) s-1) which can be expected from the relative molecular sizes of the ion carriers.


Journal of Fluorescence | 2005

Fluorescence dynamics of DNA condensed by the molecular crowding agent poly(ethylene glycol)

Mamata Kombrabail; G. Krishnamoorthy

Condensation of extended DNA into compact structures is encountered in a variety of situations, both natural and artificial. While condensation of DNA has been routinely carried out by the use of multivalent cations, cationic lipids, detergents, and polyvalent cationic polymers, the use of molecular crowding agents in condensing DNA is rather striking. In this work, we have studied the dynamics of plasmid DNA condensed in the presence of a molecular crowding agent, polyethylene glycol (PEG). Steady-state and time-resolved fluorescence of the recently established condensation-indicating DNA binder, YOYO-1 [G. Krishnamoorthy, G. Duportail, and Y. Mely (2002), Biochemistry 41, 15277–15287] was used in inferring the dynamic aspects of DNA condensates. It is shown that DNA condensed by PEG is more flexible and less compact when compared to DNA condensed by binding agents such as polyethyleneimine. The relevance of such differences in dynamics toward functional aspects of condensed DNA is discussed.


Journal of Biological Chemistry | 2015

Familial Parkinson Disease-associated Mutations Alter the Site-specific Microenvironment and Dynamics of α-Synuclein

Shruti Sahay; Dhiman Ghosh; Saumya Dwivedi; A. Anoop; Ganesh M. Mohite; Mamata Kombrabail; G. Krishnamoorthy; Samir K. Maji

Background: Aggregation of α-Syn is associated with PD pathogenesis. Results: Despite being natively unfolded, a site-specific structure exists in α-Syn that is significantly altered by familial PD-associated E46K, A53T, and A30P mutations. Conclusion: Altered site-specific structure of the PD-associated mutants may attribute to their different aggregation propensity. Significance: This study contributes to understanding the relationship between structure and aggregation of α-Syn. Human α-synuclein (α-Syn) is a natively unstructured protein whose aggregation into amyloid fibrils is associated with Parkinson disease (PD) pathogenesis. Mutations of α-Syn, E46K, A53T, and A30P, have been linked to the familial form of PD. In vitro aggregation studies suggest that increased propensity to form non-fibrillar oligomers is the shared property of these familial PD-associated mutants. However, the structural basis of the altered aggregation propensities of these PD-associated mutants is not yet clear. To understand this, we studied the site-specific structural dynamics of wild type (WT) α-Syn and its three PD mutants (A53T, E46K, and A30P). Tryptophan (Trp) was substituted at the N terminus, central hydrophobic region, and C terminus of all α-Syns. Using various biophysical techniques including time-resolved fluorescence studies, we show that irrespective of similar secondary structure and early oligomerization propensities, familial PD-associated mutations alter the site-specific microenvironment, solvent exposure, and conformational flexibility of the protein. Our results further show that the common structural feature of the three PD-associated mutants is more compact and rigid sites at their N and C termini compared with WT α-Syn that may facilitate the formation of a partially folded intermediate that eventually leads to their increased oligomerization propensities.


Journal of Physical Chemistry Letters | 2012

Depth-Dependent Heterogeneity in Membranes by Fluorescence Lifetime Distribution Analysis.

Sourav Haldar; Mamata Kombrabail; G. Krishnamoorthy; Amitabha Chattopadhyay

Biological membranes display considerable anisotropy due to differences in composition, physical characteristics, and packing of membrane components. In this Letter, we have demonstrated the environmental heterogeneity along the bilayer normal in a depth-dependent manner using a number of anthroyloxy fatty acid probes. We employed fluorescence lifetime distribution analysis utilizing the maximum entropy method (MEM) to assess heterogeneity. Our results show that the fluorescence lifetime heterogeneity varies considerably depending on fluorophore location along the membrane normal (depth), and it is the result of the anisotropic environmental heterogeneity along the bilayer normal. Environmental heterogeneity is reduced as the reporter group is moved from the membrane interface to a deeper hydrocarbon region. To the best of our knowledge, our results constitute the first experimental demonstration of anisotropic heterogeneity in bilayers. We conclude that such graded environmental heterogeneity represents an intrinsic characteristics of the membrane bilayer and envisage that it has a role in the conformation and orientation of membrane proteins and their function.


Biochimica et Biophysica Acta | 2001

Effect of phloretin on ionophore mediated electroneutral transmembrane translocations of H(+), K(+) and Na(+) in phospholipid vesicles.

Sandeep Bala; Mamata Kombrabail; B.S. Prabhananda

Rates of M(+)/H(+) exchange (M(+)=K(+), Na(+)) across phospholipid membranes by ionophore mediated electroneutral translocations and transports through channels could either increase or decrease or change negligibly on adding the polar molecule phloretin to the membrane. The changes depend on pH, the concentration and choice of M(+) and choice of ionophore/channel. Such diverse behaviours have been inferred from studies on the decay of the pH difference across soybean phospholipid vesicular membrane (=Delta pH). The transporters used in this study are (a) the exchange ionophores: nigericin, monensin; (b) combinations of alkali metal ion carriers, valinomycin or nonactin with weak acids carbonyl cyanide m-chlorophenylhydrazone or 2,4-dinitrophenol and (c) channels formed by gramicidin A. All the diverse results can be rationally explained if we take note of the following. (i) The rate limiting steps are associated with the transmembrane translocations involving the rate limiting species identified in the literature. (ii) Phloretin in the membrane decreases the apparent M(+) dissociation constant, K(M), of the M(+) bound ionophores/channels which has the effect of increasing the concentration of these species. (iii) The concentrations of H(+) bound ionophores/channels decrease on adding phloretin. (iv) Phloretin inhibits ternary complex formation (involving valinomycin or nonactin, M(+) and an anion) by forming 1:2 complexes with valinomycin-M(+) or nonactin-M(+). (v) On adding 6-ketocholestanol to the membrane (instead of phloretin) K(M) increases. The decreases/increases in K(M) mentioned above are consistent with the consequences of a hypothesis in which phloretin decreases and 6-ketocholestanol increases the positive internal membrane dipole potential.


Journal of Physical Chemistry B | 2012

Membrane Organization and Dynamics of "Inner Pair" and "Outer Pair" Tryptophan Residues in Gramicidin Channels

Sourav Haldar; Arunima Chaudhuri; Hong Gu; Roger E. Koeppe; Mamata Kombrabail; G. Krishnamoorthy; Amitabha Chattopadhyay

The linear ion channel peptide gramicidin serves as an excellent prototype for monitoring the organization, dynamics, and function of membrane-spanning channels. The tryptophan residues in gramicidin channels are crucial for establishing and maintaining the structure and function of the channel in the membrane bilayer. In order to address the basis of differential importance of tryptophan residues in the gramicidin channel, we monitored the effects of pairwise substitution of two of the four gramicidin tryptophans, the inner pair (Trp-9 and -11) and the outer pair (Trp-13 and -15), using a combination of steady state and time-resolved fluorescence approaches and circular dichroism spectroscopy. We show here that these double tryptophan gramicidin analogues adopt different conformations in membranes, suggesting that the conformational preference of double tryptophan gramicidin analogues is dictated by the positions of the tryptophans in the sequence. These results assume significance in the context of recent observations that the inner pair of tryptophans (Trp-9 and -11) is more important for gramicidin channel formation and channel conductance. These results could be potentially useful in analyzing the effect of tryptophan substitution on the functioning of ion channels and membrane proteins.


Journal of Fluorescence | 2010

Monitoring Membrane Protein Conformational Heterogeneity by Fluorescence Lifetime Distribution Analysis Using the Maximum Entropy Method

Sourav Haldar; Mamata Kombrabail; G. Krishnamoorthy; Amitabha Chattopadhyay

Due to the inherent difficulty in crystallizing membrane proteins, approaches based on fluorescence spectroscopy have proved useful in elucidating their conformational characteristics. The ion channel peptide gramicidin serves as an excellent prototype for monitoring membrane protein conformation and dynamics due to a number of reasons. We have analyzed conformational heterogeneity in membrane-bound gramicidin using fluorescence lifetime distribution analysis of tryptophan residues by the maximum entropy method (MEM). MEM represents a model-free and robust approach for analyzing fluorescence lifetime distribution. In this paper, we show for the first time, that fluorescence lifetime distribution analysis using MEM could be a convenient approach to monitor conformational heterogeneity in membrane-bound gramicidin in particular and membrane proteins in general. Lifetime distribution analysis by MEM therefore provides a novel window to monitor conformational transitions in membrane proteins.

Collaboration


Dive into the Mamata Kombrabail's collaboration.

Top Co-Authors

Avatar

G. Krishnamoorthy

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

B.S. Prabhananda

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Amitabha Chattopadhyay

Centre for Cellular and Molecular Biology

View shared research outputs
Top Co-Authors

Avatar

Sourav Haldar

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Basuthkar J. Rao

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Bidyut Sarkar

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Samir K. Maji

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Shruti Sahay

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Sudipta Maiti

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge