Manfred Ritschel
Leibniz Association
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manfred Ritschel.
Diamond and Related Materials | 2003
Albrecht Leonhardt; Manfred Ritschel; R. Kozhuharova; A. Graff; Thomas Mühl; R. Huhle; Ingolf Mönch; D. Elefant; Claus M. Schneider
Abstract Single- and multi-walled carbon nanotubes are very interesting nanoscaled materials with many possible applications in nanoelectronics. Especially, nanotubes filled with ferromagnetic materials (Fe, Co, Ni) may have significant potential in data storage. Such structures may help to exceed the best available storage densities (>65 Gb/inch2) and show in the case of Fe-filled nanotubes higher coercivities compared to bulk Fe. In addition, metal-filled carbon nanotubes are promising nanowires with excellent oxidation protection. In this paper we describe the synthesis of Fe-, Ni- and Co-filled carbon nanotubes by using the chemical vapor deposition method. Varying the deposition conditions we have obtained filled nanotubes with relatively uniform core diameters and different thicknesses of the carbon walls. The core diameters vary between 15 and 30 nm and the thickness of the carbon shells between 2 and 60 nm. The length of the tubes amounts up to 30 μm. The filled carbon nanotubes are characterised by scanning and transmission electron microscopy and energy dispersive X-ray analysis. The magnetic behaviour of the aligned Fe-filled tubes is investigated using alternating gradient magnetometry measurements and electron holography. The hysteresis loops indicate a magnetic anisotropy. The coercivity depends on the direction of the applied magnetic field. The observed enhanced coercivities are significantly higher than in bulk Fe.
Nanomedicine: Nanotechnology, Biology and Medicine | 2008
Silke Hampel; Doreen Kunze; Diana Haase; Kai Krämer; Mandy Rauschenbach; Manfred Ritschel; Albrecht Leonhardt; Jürgen Thomas; Steffen Oswald; Volker Hoffmann; Bernd Büchner
AIM In this paper, carbon nanotubes (CNTs) are presented as feasible carriers for carboplatin, a therapeutic agent for cancer treatment. The drug was introduced into CNTs to demonstrate that they are suited as nanocontainers and nanocarriers and can release the drug to initialize its medical virtue. METHOD The filling was accomplished by a wet-chemical approach after the CNTs were opened. The effect on cell proliferation and cytotoxicity of the carboplatin-filled CNT was investigated by using a viability assays. RESULTS Using different analysis methods such as electron energy loss spectroscopy and x-ray photoelectron spectroscopy the structure of carboplatin incorporated into the CNTs was found to be retained. In vitro studies showed that carboplatin-filled CNTs inhibited growth of bladder cancer cells whereas unfilled, opened CNTs barely affected cancer cell growth. CONCLUSION A reversible filling-emptying process could be performed successfully within this work. This highlights the potential of CNTs for applications in the field of drug delivery.
Journal of Applied Physics | 2003
Thomas Mühl; D. Elefant; A. Graff; R. Kozhuharova; Albrecht Leonhardt; Ingolf Mönch; Manfred Ritschel; P. Simon; Stefka Groudeva-Zotova; Claus M. Schneider
We report on the magnetic properties of Fe-filled multiwalled carbon nanotubes(MWNTs) grown by chemical vapor deposition(CVD) on Si substrates with ferrocene as precursor. The MWNTs are aligned perpendicularly to the substrate plane. X-ray diffraction analyses indicate the presence of both bcc and fcc iron with a relatively strong texture. Magnetometry measurements show a pronounced magnetic anisotropy with the easy axis perpendicular to the substrate plane and parallel to the axis of the aligned MWNTs, respectively. The low-temperature behavior suggests a negligible coupling between the two iron phases. We accessed the magnetic properties of individual Fe-filled MWNTs by electron holography using a transmission electron microscope(TEM).
Journal of Applied Physics | 2005
Albrecht Leonhardt; Manfred Ritschel; D. Elefant; N. Mattern; K. Biedermann; Silke Hampel; C. Müller; Thomas Gemming; Bernd Büchner
By optimization of the synthesis of ferromagnetic-filled carbon nanotube ensembles on Si substrates (catalytic decomposition of ferrocene) and following annealing at 645°C, marked hysteresis loops can be measured by the alternating-gradient method. Unusually high coercivities and strong anisotropies with an easy magnetic axis parallel to the alignment of the nanotubes are observed from the as-grown samples, whereas an enhanced magnetic saturation moment (up to a factor of 2) and a decreased anisotropy are realized after annealing at 645°C. The increase of the magnetic saturation moment of the Fe-filled carbon nanotube ensembles is caused by the entire transformation within the tubes of the γ-Fe and Fe3C phases to ferromagnetic α-Fe and graphite. X-ray diffraction with different glancing incidence shows that the γ-Fe is predominantly at the tips of the nanotubes, while the iron carbide resides closer to the substrate. However, after the annealing process only α-Fe is found. At an annealing temperature of 6...
Fullerenes Nanotubes and Carbon Nanostructures | 2005
Petra Pötschke; Arup R. Bhattacharyya; Andreas Janke; Sven Pegel; Albrecht Leonhardt; Christine Täschner; Manfred Ritschel; Siegmar Roth; Björn Hornbostel; Jiri Cech
Abstract This paper presents melt mixed composites where two ways of introducing nanotubes in polymer matrices were used. In the first case, commercially available masterbatches of nanotube/polymer composites are used as the starting materials that are diluted by the pure polymer in a subsequent melt mixing process (masterbatch dilution method) while in the other case nanotubes are directly incorporated into the polymer matrix. As an example of the masterbatch dilution method, composites of polycarbonate with MWNT are presented which are produced using a Brabender PL‐19 single screw extruder. In this system, electrical percolation was found at about 0.5 wt% MWNT. The nanotube dispersion as observed by TEM investigations is quite homogeneous. The direct incorporation method is discussed in composites of polycarbonate with MWNT and SWNT. For commercial MWNT percolation was found between 1.0 and 3.0 wt% depending on the aspect ratio and purity of the materials. For HiPCO‐SWNT from CNI percolation occurred between 0.25 wt% and 0.5 wt% SWNT. The incorporation of nanotubes significantly changes the stress‐strain behavior of the composites: modulus and stress are enhanced; however, the elongation at break is reduced especially above the percolation concentration.
Soft Matter | 2011
O. Buluy; S. A. Nepijko; Victor Yu. Reshetnyak; E. Ouskova; V. I. Zadorozhnii; Albrecht Leonhardt; Manfred Ritschel; G. Schönhense; Yuriy Reznikov
Using carbon nanotubes filled with α-Fe, we have shown that aggregated ferronematic colloids demonstrate reliable and very effective response to a weak (<5 mT) magnetic field. The magnetic field realigns the aggregates of the particles which results in a non-threshold reorientation of the LC nearby, leading to the optically observed director distortions. The distortion regions expand with the increase of the magnetic field and achieve maximum size of several micrometres, comparable with the size of the agglomerates. In the non-distorted regions the reorientation of the director begins at the magnetic field reaching the Freedericksz transition value. Taking into account the extreme sensitivity of aggregated ferronematics to magnetic field, the following experimental and theoretical studies of the individual response of the aggregated nanoparticles to magnetic field may became the topical task of the physics and applications of ferronematics.
Nanotechnology | 2010
M. Arlt; Diana Haase; Silke Hampel; Steffen Oswald; Alicja Bachmatiuk; R. Klingeler; R Schulze; Manfred Ritschel; Albrecht Leonhardt; Susanne Fuessel; Bernd Büchner; Kai Kraemer; Manfred P. Wirth
Since the activity of several conventional anticancer drugs is restricted by resistance mechanisms and dose-limiting side-effects, the design of nanocarriers seems to be an efficient and promising approach for drug delivery. Their chemical and mechanical stability and their possible multifunctionality render tubular nanomaterials, such as carbon nanotubes (CNTs) and carbon nanofibres (CNFs), promising delivery agents for anticancer drugs. The goal of the present study was to investigate CNTs and CNFs in order to deliver carboplatin in vitro. No significant intrinsic toxicity of unloaded materials was found, confirming their biocompatibility. Carboplatin was loaded onto CNTs and CNFs, revealing a loading yield of 0.20 mg (CNT-CP) and 0.13 mg (CNF-CP) platinum per milligram of material. The platinum release depended on the carrier material. Whereas CNF-CP marginally released the drug, CNT-CP functioned as a drug depot, constantly releasing up to 68% within 14 days. The cytotoxicity of CNT-CP and CNF-CP in urological tumour cell lines was dependent on the drug release. CNT-CP was identified to be more effective than CNF-CP concerning the impairment of proliferation and clonogenic survival of tumour cells. Moreover, carboplatin, which was delivered by CNT-CP, exhibited a higher anticancer activity than free carboplatin.
Journal of Pharmacy and Pharmacology | 2011
Giuseppe Cirillo; Silke Hampel; R. Klingeler; Francesco Puoci; Francesca Iemma; Manuela Curcio; Ortensia Ilaria Parisi; Umile Gianfranco Spizzirri; Nevio Picci; Albrecht Leonhardt; Manfred Ritschel; Bernd Büchner
Objectives To prove the possibility of covalently functionalizing multi‐walled carbon nanotubes (CNTs) by free radical grafting of gallic acid on their surface with the subsequent synthesis of materials with improved biological properties evaluated by specific in‐vitro assays.
Nanomedicine: Nanotechnology, Biology and Medicine | 2008
Anastasia Vyalikh; A. U. B. Wolter; Silke Hampel; Diana Haase; Manfred Ritschel; Albrecht Leonhardt; Hans-Joachim Grafe; Arthur Taylor; Kai Krämer; Bernd Büchner; R. Klingeler
AIMS A carbon-wrapped nanoscaled thermometer for a contactless temperature control in biological systems on the cellular level is presented. MATERIALS & METHODS The thermometer is based on multiwalled carbon nanotubes (MWCNTs) filled with materials with strongly temperature-dependent nuclear magnetic resonance (NMR) parameters. The NMR frequency shift and relaxation time were measured in cuprous-iodide-filled CNTs at different temperatures. RESULTS The experimental data indicate a pronounced temperature dependence of the NMR parameters, thereby realizing the nanoscaled thermometer. CONCLUSION This study is a proof-of-concept that the functionalized CNTs can be used as a contactless thermometer in biomedical applications.
Journal of Applied Physics | 2004
T. Ruskov; S. Asenov; I. Spirov; C. Garcia; Ingolf Mönch; A. Graff; R. Kozhuharova; Albrecht Leonhardt; Thomas Mühl; Manfred Ritschel; Claus M. Schneider; Stefka Groudeva-Zotova
Fe57 transmission Mossbauer spectroscopy (TMS) and back scattered conversion electron Mossbauer spectroscopy (CEMS) measurements were carried out on Fe-filled multiwalled carbon nanotubes (Fe-MWCNTs) grown by chemical vapor deposition with ferrocene as precursor. Samples of Fe-MWCNTs material deposited on the inner wall of the quartz tube reactor and samples of aligned Fe-MWCNTs grown perpendicularly to the oxidized Si substrate were characterised by the TMS method. The data show that Fe phases encapsulated within the carbon nanotubes comprise α-Fe, γ-Fe, and Fe3C in different percentage ratio depending on the sample preparation. These results are in a good accordance with the previously measured magnetic characteristics and with the structural data found by x-ray diffraction as well by selected area electron diffraction methods and allow a new complementary characterization of the Fe(Fe-alloy)-MWCNT systems. The CEMS method applied for the characterization of metal containing MWCNTs reveals that close to...