Manh-Thuong Nguyen
International Centre for Theoretical Physics
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manh-Thuong Nguyen.
Journal of Chemical Physics | 2013
Manh-Thuong Nguyen; Nicola Seriani; Ralph Gebauer
Adsorption and dissociation of water on different oxygen- and iron-terminated hematite(0001) surfaces at monolayer coverage have been studied by density-functional theory calculations, including a Hubbard-like+U correction. We considered six possible surface terminations, including four oxygen- and two iron-terminations. Binding energy of water on these terminations can be as large as 1.0 eV. On these terminations the energy barrier for the dissociation of the molecularly adsorbed water is less than 0.3 eV, and in few cases the dissociation is even spontaneous, i.e., without any detectable barrier. Our results thus suggest that water can be adsorbed on the α-Fe2O3(0001) surface dissociatively at room temperature, as previously found by experiment. This study also presents a very first theoretical insight into the adsorption and dissociation of water on all known terminations of the hematite(0001) surface.
Journal of Chemical Physics | 2014
Manh-Thuong Nguyen; Nicola Seriani; Simone Piccinin; Ralph Gebauer
Adopting the theoretical scheme developed by the Nørskov group [see, for example, Nørskov et al., J. Phys. Chem. B 108, 17886 (2004)], we conducted a density functional theory study of photo-driven oxidation processes of water on various terminations of the clean hematite (α-Fe2O3) (0001) surface, explicitly taking into account the strong correlation among the 3d states of iron through the Hubbard U parameter. Six best-known terminations, namely, Fe−Fe−O3− (we call S1), O−Fe−Fe−(S2), O2−Fe−Fe−(S3), O3−Fe−Fe− (S4), Fe−O3−Fe− (S5), and O−Fe−O3−(S6), are first exposed to water, the stability of resulting surfaces is investigated under photoelectrochemical conditions by considering different chemical reactions (and their reaction free energies) that lead to surfaces covered by O atoms or/and OH groups. Assuming that the water splitting reaction is driven by the redox potential for photogenerated holes with respect to the normal hydrogen electrode, UVB, at voltage larger than UVB, most 3-oxygen terminated substrates are stable. These results thus suggest that the surface, hydroxylated in the dark, should release protons under illumination. Considering the surface free energy of all the possible terminations shows that O3–S5 and O3–S1 are the most thermodynamically stable. While water oxidation process on the former requires an overpotential of 1.22 V, only 0.84 V is needed on the latter.
Journal of Chemical Theory and Computation | 2013
Dorothea Golze; Marcella Iannuzzi; Manh-Thuong Nguyen; Daniele Passerone; Jürg Hutter
A novel method for including polarization effects within hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of adsorbate-metal systems is presented. The interactions between adsorbate (QM) and metallic substrate (MM) are described at the MM level of theory. Induction effects are additionally accounted for by applying the image charge formulation. The charge distribution induced within the metallic substrate is modeled by a set of Gaussian charges (image charges) centered at the metal atoms. The image charges and the electrostatic response of the QM potential are determined self-consistently by imposing the constant-potential condition within the metal. The implementation is embedded in a highly efficient Gaussian and plane wave framework and is naturally suited for periodic systems. Even though the electronic properties of the metallic substrate are not taken into account explicitly, the augmented QM/MM scheme can reproduce characteristic polarization effects of the adsorbate. The method is assessed through the investigation of structural and electronic properties of benzene, nitrobenzene, thymine, and guanine on Au(111). The study of small water clusters adsorbed on Pt(111) is also reported in order to demonstrate that the approach provides a sizable correction of the MM-based interactions between adsorbate and substrate. Large-scale molecular dynamics (MD) simulations of a water film in contact with a Pt(111) surface show that the method is suitable for simulations of liquid/metal interfaces at reduced computational cost.
Chemistry: A European Journal | 2011
Giovanni Di Santo; Stephan Blankenburg; Carla Castellarin-Cudia; Mattia Fanetti; Patrizia Borghetti; L. Sangaletti; Luca Floreano; Alberto Verdini; Elena Magnano; Federica Bondino; Carlo A. Pignedoli; Manh-Thuong Nguyen; Roberto Gaspari; Daniele Passerone; A. Goldoni
Scratching the surface: Formation of a monolayer of 2H-tetraphenylporphyrins (2H-TPP) on Ag(111), either by sublimation of a multilayer in the range 525-600 K or by annealing (at the same temperature) a monolayer deposited at room temperature, induces a chemical modification of the molecules. Rotation of the phenyl rings into a flat conformation is observed and tentatively explained, by using DFT calculations, as a peculiar reaction due to molecular dehydrogenation.
Nano Letters | 2009
Matthias Treier; Manh-Thuong Nguyen; Neville V. Richardson; Carlo A. Pignedoli; Daniele Passerone; Roman Fasel
The quest for miniaturization of organic nanostructures is fueled by their possible applications in future nanoscale electronic devices. Here we show how a range of nanostructures of reduced dimensionality of the organic semiconductor PTCDA can be realized on Au(111) by intermixing the latter with hydrogen bonding spacer molecules. The purpose of the spacers is to separate nanounits of pure PTCDA, using hydrogen bonds between the anhydride end of PTCDA and amine groups of the spacers. A highly regular array of potential quantum dots can be realized by this approach.
Chemistry: A European Journal | 2016
Tuan Anh Pham; Fei Song; Manh-Thuong Nguyen; Zheshen Li; Florian Studener; Meike Stöhr
The on-surface polymerization of 1,3,6,8-tetrabromopyrene (Br4 Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4 Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C-Cu-C bonds. After annealing at 473 K, the C-Cu-C bonds were converted to covalent C-C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self-assembled two-dimensional (2D) patterns stabilized by both Br-Br halogen and Br-H hydrogen bonds were observed upon deposition of Br4 Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C-Br bonds and the formation of disordered metal-coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4 Py on the different substrates.
ChemPhysChem | 2014
Manh-Thuong Nguyen; Nicola Seriani; Ralph Gebauer
By using density functional theory calculations at the PBE+U level, we investigated the properties of hematite (0001) surfaces decorated with adatoms/vacancies/substituents. For the most stable surface termination over a large range of oxygen chemical potentials (muO), the vacancy formation and adsorption energies were determined as a function of muO. Under oxygen-rich conditions, all defects are metastable with respect to the ideal surface. Under oxygen-poor conditions, O vacancies and Fe adatoms become stable. Under ambient conditions, all defects are metastable; in the bulk, O vacancies form more easily than Fe vacancies, whereas at the surface the opposite is true. All defects, that is, O and Fe vacancies, Fe and Al adatoms, and Al substituents, induce important modifications to the geometry of the surface in their vicinity. Dissociative adsorption of molecular oxygen is likely to be exothermic on surfaces with Fe/Al adatoms or O vacancies.
Journal of Chemical Physics | 2016
Kanchan Ulman; Manh-Thuong Nguyen; Nicola Seriani; Ralph Gebauer
There is a big debate in the community regarding the role of surface states of hematite in the photoelectrochemical water splitting. Experimental studies on non-catalytic overlayers passivating the hematite surface states claim a favorable reduction in the overpotential for the water splitting reaction. As a first step towards understanding the effect of these overlayers, we have studied the system Ga2O3 overlayers on hematite (0001) surfaces using first principles computations in the PBE+U framework. Our computations suggest that stoichiometric terminations of Ga2O3 overlayers are energetically more favored than the bare surface, at ambient oxygen chemical potentials. Energetics suggest that the overlayers prefer to grow via a layer-plus-island (Stranski-Krastanov) growth mode with a critical layer thickness of 1-2 layers. Thus, a complete wetting of the hematite surface by an overlayer of gallium oxide is thermodynamically favored. We establish that the effect of deposition of the Ga2O3 overlayers on the bare hematite surface is to passivate the surface states for the stoichiometric termination. For the oxygen terminated surface which is the most stable termination under photoelectrochemical conditions, the effect of deposition of the Ga2O3 overlayer is to passivate the hole-trapping surface state.
Journal of Chemical Physics | 2015
Manh-Thuong Nguyen; Matteo Farnesi Camellone; Ralph Gebauer
Extensive first principles calculations are carried out to investigate Au monomers and dimers supported on α-Fe2O3(0001) surfaces in terms of structure optimizations, electronic structure analyses, and ab initio thermodynamics calculations of surface phase diagrams. All computations rely on density functional theory in the generalized gradient approximation (Perdew-Burke-Ernzerhof (PBE)) and account for on-site Coulomb interactions via inclusion of a Hubbard correction (PBE+U). The relative stability of Au monomers/dimers on the stoichiometric termination of α-Fe2O3(0001) decorated with various vacancies (multiple oxygen vacancies, iron vacancy, and mixed iron-oxygen vacancies) has been computed as a function of the oxygen chemical potential. The charge rearrangement induced by Au at the oxide contact is analyzed in detail and discussed. On one hand, ab initio thermodynamics predicts that under O-rich conditions, structures obtained by replacing a surface Fe atom with a Au atom are thermodynamically stable over a wide range of temperatures. On the other hand, the complex of a CO molecule on a Au atom substituting surface Fe atoms is thermodynamically stable only in a much more narrow range of values of the O chemical potential under O-rich conditions. In the case of a Au dimer, under O-rich conditions, supported Au atoms at an O-Fe di-vacancy are more stable. However, upon CO adsorption, the complex of a CO molecule and 2 Au atoms located at a single Fe vacancy is more favorable.
ChemPhysChem | 2015
Manh-Thuong Nguyen; Pham Nam Phong; Nguyen Duc Tuyen
Density functional calculations are performed to study the energetic, structural, and electronic properties of graphene and silicene functionalized with hydrogen. Our calculations predict that H atoms bind much more strongly to silicene than to graphene. The adsorbed H atoms tend to cooperatively stabilize each other leading to a two-dimensional nucleation and growth mechanism. The different structural and electronic modifications induced by H in fully functionalized graphene and silicene (known as graphane and silicane) are also explained. Finally, the electronic properties of defective graphane with multiple hydrogen vacancies are investigated. Engineering the vacancies in graphane offers a way to modify the electronic properties of this material.
Collaboration
Dive into the Manh-Thuong Nguyen's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs