Manish Datt
Case Western Reserve University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manish Datt.
PLOS Pathogens | 2013
Uri R. Mbonye; Giridharan Gokulrangan; Manish Datt; Curtis Dobrowolski; Maxwell Cooper; Mark R. Chance; Jonathan Karn
The HIV transactivator protein, Tat, enhances HIV transcription by recruiting P-TEFb from the inactive 7SK snRNP complex and directing it to proviral elongation complexes. To test the hypothesis that T-cell receptor (TCR) signaling induces critical post-translational modifications leading to enhanced interactions between P-TEFb and Tat, we employed affinity purification–tandem mass spectrometry to analyze P-TEFb. TCR or phorbal ester (PMA) signaling strongly induced phosphorylation of the CDK9 kinase at Ser175. Molecular modeling studies based on the Tat/P-TEFb X-ray structure suggested that pSer175 strengthens the intermolecular interactions between CDK9 and Tat. Mutations in Ser175 confirm that this residue could mediate critical interactions with Tat and with the bromodomain protein BRD4. The S175A mutation reduced CDK9 interactions with Tat by an average of 1.7-fold, but also completely blocked CDK9 association with BRD4. The phosphomimetic S175D mutation modestly enhanced Tat association with CDK9 while causing a 2-fold disruption in BRD4 association with CDK9. Since BRD4 is unable to compete for binding to CDK9 carrying S175A, expression of CDK9 carrying the S175A mutation in latently infected cells resulted in a robust Tat-dependent reactivation of the provirus. Similarly, the stable knockdown of BRD4 led to a strong enhancement of proviral expression. Immunoprecipitation experiments show that CDK9 phosphorylated at Ser175 is excluded from the 7SK RNP complex. Immunofluorescence and flow cytometry studies carried out using a phospho-Ser175-specific antibody demonstrated that Ser175 phosphorylation occurs during TCR activation of primary resting memory CD4+ T cells together with upregulation of the Cyclin T1 regulatory subunit of P-TEFb, and Thr186 phosphorylation of CDK9. We conclude that the phosphorylation of CDK9 at Ser175 plays a critical role in altering the competitive binding of Tat and BRD4 to P-TEFb and provides an informative molecular marker for the identification of the transcriptionally active form of P-TEFb.
Oncotarget | 2015
Sanjeev Shukla; Rajnee Kanwal; Eswar Shankar; Manish Datt; Mark R. Chance; Pingfu Fu; Gregory T. MacLennan; Sanjay Gupta
IKKα has been implicated as a key regulator of oncogenesis and driver of the metastatic process; therefore is regarded as a promising therapeutic target in anticancer drug development. In spite of the progress made in the development of IKK inhibitors, no potent IKKα inhibitor(s) have been identified. Our multistep approach of molecular modeling and direct binding has led to the identification of plant flavone apigenin as a specific IKKα inhibitor. Here we report apigenin, in micro molar range, inhibits IKKα kinase activity, demonstrates anti-proliferative and anti-invasive activities in functional cell based assays and exhibits anticancer efficacy in experimental tumor model. We found that apigenin directly binds with IKKα, attenuates IKKα kinase activity and suppresses NF-ĸB/p65 activation in human prostate cancer PC-3 and 22Rv1 cells much more effectively than IKK inhibitor, PS1145. We also showed that apigenin caused cell cycle arrest similar to knockdown of IKKα in prostate cancer cells. Studies in xenograft mouse model indicate that apigenin feeding suppresses tumor growth, lowers proliferation and enhances apoptosis. These effects correlated with inhibition of p-IKKα, NF-ĸB/p65, proliferating cell nuclear antigen and increase in cleaved caspase 3 expression in a dose-dependent manner. Overall, our results suggest that inhibition of cell proliferation, invasiveness and decrease in tumor growth by apigenin are mediated by its ability to suppress IKKα and downstream targets affecting NF-ĸB signaling pathways.
Journal of Biological Chemistry | 2009
Rachna Aneja; Manish Datt; Balwinder Singh; Shekhar Kumar; Girish Sahni
With the goal of identifying hitherto unknown surface exosites of streptokinase involved in substrate human plasminogen recognition and catalytic turnover, synthetic peptides encompassing the 170 loop (CQFTPLNPDDDFRPGLKDTKLLC) in the β-domain were tested for selective inhibition of substrate human plasminogen activation by the streptokinase-plasmin activator complex. Although a disulfide-constrained peptide exhibited strong inhibition, a linear peptide with the same sequence, or a disulfide-constrained variant with a single lysine to alanine mutation showed significantly reduced capabilities of inhibition. Alanine-scanning mutagenesis of the 170 loop of the β-domain of streptokinase was then performed to elucidate its importance in streptokinase-mediated plasminogen activation. Some of the 170 loop mutants showed a remarkable decline in kcat without any alteration in apparent substrate affinity (Km) as compared with wild-type streptokinase and identified the importance of Lys180 as well as Pro177 in the functioning of this loop. Remarkably, these mutants were able to generate amidolytic activity and non-proteolytic activation in “partner” plasminogen as wild-type streptokinase. Moreover, cofactor activities of the 170 loop mutants, pre-complexed with plasmin, against microplasminogen as the substrate showed a similar pattern of decline in kcat as that observed in the case of full-length plasminogen, with no concomitant change in Km. These results strongly suggest that the 170 loop of the β-domain of streptokinase is important for catalysis by the streptokinase-plasmin(ogen) activator complex, particularly in catalytic processing/turnover of substrate, although it does not seem to contribute significantly toward enzyme-substrate affinity per se.
Biochimica et Biophysica Acta | 2008
Suman Yadav; Manish Datt; Balvinder Singh; Girish Sahni
The role of a prominent surface-exposed loop (residues 88-97) in the alpha domain of streptokinase (SK), in human plasminogen (HPG) activation was explored through its selective mutagenesis and deletion studies. We first made a conformationally constrained derivative of the loop by the substitution of sequences known to possess a strong propensity for beta-turn formation. The mutant so formed (termed SK88-97-Beta Turn), when tested for co-factor activity against substrate HPG, after first forming a 1:1 molar complex with human plasmin (HPN), showed a nearly 6-fold decreased co-factor activity compared to the wild-type, native SK. The major catalytic change was observed to be at the k(cat) level, with relatively minor changes in Km values against HPG. Real-time binary interaction (i.e. the 1:1 complexation between SK, or its mutant/s, with HPG), and ternary complexation studies (i.e. the docking of a substrate HPG molecule into the preformed SK-HPG complex) using Surface Plasmon Resonance were done. These studies revealed minor alterations in binary complex formation but the ternary interactions of the substitution and/or deletion mutants were found to be decreased for full-length HPG compared to that for native SK.HPG. In contrast, their ternary interactions with the isolated five-kringle domain unit of plasminogen (K1-5) showed Kd values comparable to that seen with the native SK.HPG complex. Taking into consideration the overall alterations observed in catalytic levels after site-specific mutagenesis and complete loop deletion of the 88-97 loop, on the one hand, and its known position at the SK-HPG interface in the binary complex, suggests the importance of this loop. The present results suggest that the 88-97 loop of the alpha domain of SK contributes towards catalytic turn-over, even though its individual contribution towards enzyme-substrate affinity per se is minimal.
PLOS ONE | 2016
Rajnee Kanwal; Manish Datt; Xiaoqi Liu; Sanjay Gupta
Methylation of DNA and histone proteins are mutually involved in the epigenetic regulation of gene expression mediated by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs). DNMTs methylate cytosine residues within gene promoters, whereas HMTs catalyze the transfer of methyl groups to lysine and arginine residues of histone proteins, thus causing chromatin condensation and transcriptional repression, which play an important role in the pathogenesis of cancer. The potential reversibility of epigenetic alterations has encouraged the development of dual pharmacologic inhibitors of DNA and histone methylation as anticancer therapeutics. Dietary flavones can affect epigenetic modifications that accumulate over time and have shown anticancer properties, which are undefined. Through DNA binding and in silico protein-ligand docking studies with plant flavones viz. Apigenin, Chrysin and Luteolin, the effect of flavones on DNA and histone methylation was assessed. Spectroscopic analysis of flavones with calf-thymus DNA revealed intercalation as the dominant binding mode, with specific binding to a GC-rich sequence in the DNA duplex. A virtual screening approach using a model of the catalytic site of DNMT and EZH2 demonstrated that plant flavones are tethered at both ends inside the catalytic pocket of DNMT and EZH2 by means of hydrogen bonding. Epigenetic studies performed with flavones exhibited a decrease in DNMT enzyme activity and a reversal of the hypermethylation of cytosine bases in the DNA and prevented cytosine methylation in the GC-rich promoter sequence incubated with the M.SssI enzyme. Furthermore, a marked decrease in HMT activity and a decrease in EZH2 protein expression and trimethylation of H3K27 were noted in histones isolated from cancer cells treated with plant flavones. Our results suggest that dietary flavones can alter DNMT and HMT activities and the methylation of DNA and histone proteins that regulate epigenetic modifications, thus providing a significant anticancer effect by altering epigenetic processes involved in the development of cancer.
Journal of Biological Chemistry | 2011
Suman Yadav; Rachna Aneja; Prakash P. Kumar; Manish Datt; Sonali Sinha; Girish Sahni
To identify new structure-function correlations in the γ domain of streptokinase, mutants were generated by error-prone random mutagenesis of the γ domain and its adjoining region in the β domain followed by functional screening specifically for substrate plasminogen activation. Single-site mutants derived from various multipoint mutation clusters identified the importance of discrete residues in the γ domain that are important for substrate processing. Among the various residues, aspartate at position 328 was identified as critical for substrate human plasminogen activation through extensive mutagenesis of its side chain, namely D328R, D328H, D328N, and D328A. Other mutants found to be important in substrate plasminogen activation were, namely, R319H, N339S, K334A, K334E, and L335Q. When examined for their 1:1 interaction with human plasmin, these mutants were found to retain the native-like high affinity for plasmin and also to generate amidolytic activity with partner plasminogen in a manner similar to wild type streptokinase. Moreover, cofactor activities of the mutants precomplexed with plasmin against microplasminogen as the substrate as well as in silico modeling studies suggested that the region 315–340 of the γ domain interacts with the serine protease domain of the macromolecular substrate. Overall, our results identify the presence of a substrate specific exosite in the γ domain of streptokinase.
Journal of Biological Chemistry | 2011
Janna Kiselar; Manish Datt; Mark R. Chance; Michael A. Weiss
Background: Proinsulin, an intermediate in insulin biosynthesis, is refractory to crystallization. Results: Synchrotron-based hydroxyl radical footprints of proinsulin were obtained in relation to classical structures of insulin. Conclusion: Molecular models based on footprinting provide evidence for native self-assembly and an ensemble of C-domain orientations. Significance: Footprinting promises to enable analysis of toxic aggregation of clinical proinsulin variants in neonatal diabetes mellitus. Mutations in the insulin gene can impair proinsulin folding and cause diabetes mellitus. Although crystal structures of insulin dimers and hexamers are well established, proinsulin is refractory to crystallization. Although an NMR structure of an engineered proinsulin monomer has been reported, structures of the wild-type monomer and hexamer remain undetermined. We have utilized hydroxyl radical footprinting and molecular modeling to characterize these structures. Differences between the footprints of insulin and proinsulin, defining a “shadow” of the connecting (C) domain, were employed to refine the model. Our results demonstrate that in its monomeric form, (i) proinsulin contains a native-like insulin moiety and (ii) the C-domain footprint resides within an adjoining segment (residues B23–B29) that is accessible to modification in insulin but not proinsulin. Corresponding oxidation rates were observed within core insulin moieties of insulin and proinsulin hexamers, suggesting that the proinsulin hexamer retains an A/B structure similar to that of insulin. Further similarities in rates of oxidation between the respective C-domains of proinsulin monomers and hexamers suggest that this loop in each case flexibly projects from an outer surface. Although dimerization or hexamer assembly would not be impaired, an ensemble of predicted C-domain positions would block hexamer-hexamer stacking as visualized in classical crystal lattices. We anticipate that protein footprinting in combination with modeling, as illustrated here, will enable comparative studies of diabetes-associated mutant proinsulins and their aberrant modes of aggregation.
Biochemistry | 2013
Rachna Aneja; Manish Datt; Suman Yadav; Girish Sahni
To examine the global function of the key surface-exposed loops of streptokinase, bearing substrate-specific exosites, namely, the 88-97 loop in the α domain, the 170 loop in the β domain, and the coiled-coil region (Leu321-Asn338) in the γ domain, mutagenic as well as peptide inhibition studies were carried out. Peptides corresponded to the primary structure of an exosite, either individual or stoichiometric mixtures of various disulfide-constrained synthetic peptide(s) inhibited plasminogen activation by streptokinase. Remarkably, pronounced inhibition of substrate plasminogen activation by the preformed streptokinase-plasmin activator complex was observed when complementary mixtures of different peptides were used compared to the same overall concentrations of individual peptides, suggesting co-operative interactions between the exosites. This observation was confirmed with streptokinase variants mutated at one, two, or three sites simultaneously. The single/double/triple exosite mutants of streptokinase showed a nonadditive, synergistic decline in kcat for substrate plasminogen activation in the order single > double > triple exosite mutant. Under the same conditions, zymogen activation by the various mutants remained essentially native- like in terms of nonproteolytic activation of partner plasminogen. Multisite mutants also retain affinity to form 1:1 stoichiometric activator complexes with plasmin when probed through sensitive equilibrium fluorescence studies. Thus, the present results strongly support a model of streptokinase action, wherein catalysis by the streptokinase-plasmin complex operates through a distributed network of substrate-interacting exosites resident across all three domains of the cofactor protein.
Journal of Biological Chemistry | 2008
Rahul Saxena; Pavitra Kanudia; Manish Datt; Haider Hussain Dar; Subramanian Karthikeyan; Balvinder Singh; Pradip K. Chakraborti
Genes encoding the peptide deformylase enzyme (def) are present in all eubacteria and are involved in the deformylation of the N-formyl group of newly synthesized polypeptides during protein synthesis. We compared the amino acid sequences of this enzyme in different mycobacterial species and found that they are highly conserved (76% homology with 62% identity); however, when this comparison was extended to other eubacterial homologs, it emerged that the mycobacterial proteins have an insertion region containing three consecutive arginine residues (residues 77–79 in Mycobacterium tuberculosis peptide deformylase (mPDF)). Here, we demonstrate that these three arginines are important for the activity of mPDF. Circular dichroism studies of wild-type mPDF and of mPDF containing individual conservative substitutions (R77K, R78K, or R79K) or combined substitutions incorporated into a triple mutant (R77K/R78K/R79K) indicate that such mutations cause mPDF to undergo structural alterations. Molecular modeling of mPDF suggests that the three arginines are distal to the active site. Molecular dynamics simulations of wild-type and mutant mPDF structures indicate that the arginines may be involved in the stabilization of substrate binding pocket residues for their proper interaction with peptide(s). Treatment with 5′-phosphothiorate-modified antisense oligodeoxyribonucleotides directed against different regions of def from M. tuberculosis inhibits growth of Mycobacterium smegmatis in culture. Taken together, these results hold out the possibility of future design of novel mycobacteria-specific PDF inhibitors.
Cancer Research | 2016
Rajnee Kanwal; Manish Datt; Sanjay Gupta
Methylation of DNA and histone protein is an epigenetic modification mediated by DNA methyltransferases (DNMTs) and histone methyltransferases (HMTs) critically involved in methylation and regulation of affinity binding between the histones and DNA backbone. HMTs catalyze the transfer of one, two, or three methyl groups to lysine and arginine residues of histone proteins. The HMTs-mediated increase in histone affinity to DNA causes chromatin condensation, preventing transcription; whereas DNMTs methylate cytosine residues within gene promoters resulting in transcriptional repression. DNMT and HMT activities are reported to be associated with signal transduction, cell growth and death, as well as with the pathogenesis of various human diseases including cancer. Dietary plant flavones can affect epigenetic modifications accumulated over time and have shown health-beneficial effects. However, the epigenetic response on DNMT and HMT elicited by plant flavones has not been elucidated. Through in silico protein-ligand docking studies and molecular studies with plant flavones viz. chrysin, apigenin and luteolin and their effect on DNA and histone methylation was assessed. The ligands were individually docked into the pocket of DNMT and EZH2 using Glide in XP (extra precision) mode (Schrodinger, LLC). Binding of ligands with proteins were evaluated using GlideScore, which is an empirically derived scoring function. Virtual screening approach using the model of the catalytic site of DNMT and EZH2 demonstrated that plant flavones tethered at both ends inside the catalytic pocket of DNMT and EZH2 by means of hydrogen bonding. Flavones exhibited a high docking rank (Glide score) in the order of chrysin (-5.8), apigenin (-6.4), luteolin (-7.4) compared with the pharmacological inhibitor, 5-Aza-2′-deoxycytidine (-4.2). Notably, all three flavones inhibited EZH2, having a high docking rank compared to the known pharmacological inhibitor, 3-Deazaneplanocin A (DZNep). The docking rank for chrysin was -10.07, apigenin -9.73 and luteolin -11.23, compared to -7.62 for DZNep. Epigenetic studies performed with plant flavones demonstrated reversal of hypermethylation of cytosine bases in the DNA and prevented methylation of cytosine in the GC-rich promoter sequence incubated with MSsI enzyme. Furthermore, decrease protein expression of EZH2 and trimethylation of H3K27 was noted in prostate cancer cells treated with these plant flavones. Taken together, our results suggest that plant flavone can alter DNMT and HMT activities and methylation of DNA and histone proteins that regulate epigenetic modifications providing significant health-effects and prevent various pathological processes involved in the development of cancer. Citation Format: Rajnee Kanwal, Manish Datt, Sanjay Gupta. Inhibition of DNA methyltransferases and histone methyltransferases by plant flavones. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 5258.