Manjeevan Seera
Swinburne University of Technology Sarawak Campus
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Manjeevan Seera.
Expert Systems With Applications | 2014
Manjeevan Seera; Chee Peng Lim
In this paper, a hybrid intelligent system that consists of the Fuzzy Min-Max neural network, the Classification and Regression Tree, and the Random Forest model is proposed, and its efficacy as a decision support tool for medical data classification is examined. The hybrid intelligent system aims to exploit the advantages of the constituent models and, at the same time, alleviate their limitations. It is able to learn incrementally from data samples (owing to Fuzzy Min-Max neural network), explain its predicted outputs (owing to the Classification and Regression Tree), and achieve high classification performances (owing to Random Forest). To evaluate the effectiveness of the hybrid intelligent system, three benchmark medical data sets, viz., Breast Cancer Wisconsin, Pima Indians Diabetes, and Liver Disorders from the UCI Repository of Machine Learning, are used for evaluation. A number of useful performance metrics in medical applications which include accuracy, sensitivity, specificity, as well as the area under the Receiver Operating Characteristic curve are computed. The results are analyzed and compared with those from other methods published in the literature. The experimental outcomes positively demonstrate that the hybrid intelligent system is effective in undertaking medical data classification tasks. More importantly, the hybrid intelligent system not only is able to produce good results but also to elucidate its knowledge base with a decision tree. As a result, domain users (i.e., medical practitioners) are able to comprehend the prediction given by the hybrid intelligent system; hence accepting its role as a useful medical decision support tool.
IEEE Transactions on Neural Networks | 2012
Manjeevan Seera; Chee Peng Lim; Dahaman Ishak; Harapajan Singh
In this paper, a novel approach to detect and classify comprehensive fault conditions of induction motors using a hybrid fuzzy min-max (FMM) neural network and classification and regression tree (CART) is proposed. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. A series of real experiments is conducted, whereby the motor current signature analysis method is applied to form a database comprising stator current signatures under different motor conditions. The signal harmonics from the power spectral density are extracted as discriminative input features for fault detection and classification with FMM-CART. A comprehensive list of induction motor fault conditions, viz., broken rotor bars, unbalanced voltages, stator winding faults, and eccentricity problems, has been successfully classified using FMM-CART with good accuracy rates. The results are comparable, if not better, than those reported in the literature. Useful explanatory rules in the form of a decision tree are also elicited from FMM-CART to analyze and understand different fault conditions of induction motors.
Expert Systems With Applications | 2014
Manjeevan Seera; Chee Peng Lim; Saeid Nahavandi; Chu Kiong Loo
In this paper, a review on condition monitoring of induction motors is first presented. Then, an ensemble of hybrid intelligent models that is useful for condition monitoring of induction motors is proposed. The review covers two parts, i.e., (i) a total of nine commonly used condition monitoring methods of induction motors; and (ii) intelligent learning models for condition monitoring of induction motors subject to single and multiple input signals. Based on the review findings, the Motor Current Signature Analysis (MCSA) method is selected for this study owing to its online, non-invasive properties and its requirement of only single input source; therefore leading to a cost-effective condition monitoring method. A hybrid intelligent model that consists of the Fuzzy Min–Max (FMM) neural network and the Random Forest (RF) model comprising an ensemble of Classification and Regression Trees is developed. The majority voting scheme is used to combine the predictions produced by the resulting FMM–RF ensemble (or FMM–RFE) members. A benchmark problem is first deployed to evaluate the usefulness of the FMM–RFE model. Then, the model is applied to condition monitoring of induction motors using a set of real data samples. Specifically, the stator current signals of induction motors are obtained using the MCSA method. The signals are processed to produce a set of harmonic-based features for classification using the FMM–RFE model. The experimental results show good performances in both noise-free and noisy environments. More importantly, a set of explanatory rules in the form of a decision tree can be extracted from the FMM–RFE model to justify its predictions. The outcomes ascertain the effectiveness of the proposed FMM–RFE model in undertaking condition monitoring tasks, especially for induction motors, under different environments.
IEEE Transactions on Neural Networks | 2014
Manjeevan Seera; Chee Peng Lim
In this brief, a hybrid model combining the fuzzy min-max (FMM) neural network and the classification and regression tree (CART) for online motor detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, exploits the advantages of both FMM and CART for undertaking data classification and rule extraction problems. To evaluate the applicability of the proposed FMM-CART model, an evaluation with a benchmark data set pertaining to electrical motor bearing faults is first conducted. The results obtained are equivalent to those reported in the literature. Then, a laboratory experiment for detecting and diagnosing eccentricity faults in an induction motor is performed. In addition to producing accurate results, useful rules in the form of a decision tree are extracted to provide explanation and justification for the predictions from FMM-CART. The experimental outcome positively shows the potential of FMM-CART in undertaking online motor fault detection and diagnosis tasks.
Applied Soft Computing | 2013
Manjeevan Seera; Chee Peng Lim; Dahaman Ishak; Harapajan Singh
In this paper, a hybrid soft computing model comprising the Fuzzy Min-Max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis is described. Specifically, the hybrid model, known as FMM-CART, is used to detect and classify fault conditions of induction motors in both offline and online environments. A series of experiments is conducted, whereby the Motor Current Signature Analysis (MCSA) method is applied to form a database containing stator current signatures under different motor conditions. The signal harmonics from the power spectral density (PSD) are extracted, and used as the discriminative input features for fault classification with FMM-CART. Three main induction motor conditions, viz. broken rotor bars, stator winding faults, and unbalanced supply, are used to evaluate the effectiveness of FMM-CART. The results indicate that FMM-CART is able to detect motor faults in the early stage, in order to avoid further damage to the induction motor as well as the overall machine or system that uses the motor in its operations.
Applied Soft Computing | 2015
Manjeevan Seera; Chee Peng Lim; Chu Kiong Loo; Harapajan Singh
When no prior knowledge is available, clustering is a useful technique for categorizing data into meaningful groups or clusters. In this paper, a modified fuzzy min-max (MFMM) clustering neural network is proposed. Its efficacy for tackling power quality monitoring tasks is demonstrated. A literature review on various clustering techniques is first presented. To evaluate the proposed MFMM model, a performance comparison study using benchmark data sets pertaining to clustering problems is conducted. The results obtained are comparable with those reported in the literature. Then, a real-world case study on power quality monitoring tasks is performed. The results are compared with those from the fuzzy c-means and k-means clustering methods. The experimental outcome positively indicates the potential of MFMM in undertaking data clustering tasks and its applicability to the power systems domain.
Neural Computing and Applications | 2013
Manjeevan Seera; Chee Peng Lim; Dahaman Ishak; Harapajan Singh
In this paper, an application of the motor current signature analysis (MCSA) method and the fuzzy min–max (FMM) neural network to detection and classification of induction motor faults is described. The finite element method is employed to generate simulated data pertaining to changes in the stator current signatures under different motor conditions. The MCSA method is then used to process the stator current signatures. Specifically, the power spectral density is employed to extract harmonics features for fault detection and classification with the FMM network. Various types of induction motor faults, which include stator winding faults and eccentricity problems, under different load conditions are experimented. The results are analyzed and compared with those from other methods. The outcomes indicate that the proposed technique is effective for fault detection and diagnosis of induction motors under different conditions.
Journal of Intelligent Manufacturing | 2016
Manjeevan Seera; Chee Peng Lim; Chu Kiong Loo
In this paper, a hybrid online learning model that combines the fuzzy min–max (FMM) neural network and the Classification and Regression Tree (CART) for motor fault detection and diagnosis tasks is described. The hybrid model, known as FMM-CART, incorporates the advantages of both FMM and CART for undertaking data classification (with FMM) and rule extraction (with CART) problems. In particular, the CART model is enhanced with an importance predictor-based feature selection measure. To evaluate the effectiveness of the proposed online FMM-CART model, a series of experiments using publicly available data sets containing motor bearing faults is first conducted. The results (primarily prediction accuracy and model complexity) are analyzed and compared with those reported in the literature. Then, an experimental study on detecting imbalanced voltage supply of an induction motor using a laboratory-scale test rig is performed. In addition to producing accurate results, a set of rules in the form of a decision tree is extracted from FMM-CART to provide explanations for its predictions. The results positively demonstrate the usefulness of FMM-CART with online learning capabilities in tackling real-world motor fault detection and diagnosis tasks.
Neural Computing and Applications | 2015
Chu Kiong Loo; Wei Shiung Liew; Manjeevan Seera; Einly Lim
Abstract In this study, a comprehensive methodology for overcoming the design problem of the Fuzzy ARTMAP neural network is proposed. The issues addressed are the sequence of training data for supervised learning and optimum parameter tuning for parameters such as baseline vigilance. A genetic algorithm search heuristic was chosen to solve this multi-objective optimization problem. To further augment the ARTMAP’s pattern classification ability, multiple ARTMAPs were optimized via genetic algorithm and assembled into a classifier ensemble. An optimal ensemble was realized by the inter-classifier diversity of its constituents. This was achieved by mitigating convergence in the genetic algorithms by employing a hierarchical parallel architecture. The best-performing classifiers were then combined in an ensemble, using probabilistic voting for decision combination. This study also integrated the disparate methods to operate within a single framework, which is the proposed novel method for creating an optimum classifier ensemble configuration with minimum user intervention. The methodology was benchmarked using popular data sets from UCI machine learning repository.
Applied Soft Computing | 2015
Wei Shiung Liew; Manjeevan Seera; Chu Kiong Loo; Einly Lim
Training neural networks in distinguishing different emotions from physiological signals frequently involves fuzzy definitions of each affective state. In addition, manual design of classification tasks often uses sub-optimum classifier parameter settings, leading to average classification performance. In this study, an attempt to create a framework for multi-layered optimization of an ensemble of classifiers to maximize the systems ability to learn and classify affect, and to minimize human involvement in setting optimum parameters for the classification system is proposed. Using fuzzy adaptive resonance theory mapping (ARTMAP) as the classifier template, genetic algorithms (GAs) were employed to perform exhaustive search for the best combination of parameter settings for individual classifier performance. Speciation was implemented using subset selection of classification data attributes, as well as using an island model genetic algorithms method. Subsequently, the generated population of optimum classifier configurations was used as candidates to form an ensemble of classifiers. Another set of GAs were used to search for the combination of classifiers that would result in the best classification ensemble accuracy. The proposed methodology was tested using two affective data sets and was able to produce relatively small ensembles of fuzzy ARTMAPs with excellent affect recognition accuracy.