Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manju Shri is active.

Publication


Featured researches published by Manju Shri.


Ecotoxicology and Environmental Safety | 2009

Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings ☆

Manju Shri; Smita Kumar; Debasis Chakrabarty; Prabodh Kumar Trivedi; Shekhar Mallick; Prashant Misra; Devesh Shukla; Seema Mishra; Sudhakar Srivastava; Rudra Deo Tripathi; Rakesh Tuli

The physiological, biochemical, and proteomic changes in germinating rice seedlings were investigated under arsenic stress. A marked decrease in germination percentage, shoot, and root elongation as well as plant biomass was observed with arsenic treatments, as compared to control, whereas accumulation of arsenic and malondialdehyde (MDA) in seedlings were increased significantly with increasing arsenic concentration (both AsIII and AsV). The up-regulation of some antioxidant enzyme activities and the isozymes of superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), peroxidase (POD, EC 1.11.1.7), and glutathione reductase (GR, 1.6.4.2) substantiated that arsenic accumulation generated oxidative stress, which was more pronounced in As(III) treatment. We also studied the protective effect of reduced glutathione (GSH) and cysteine (Cys) to As(III)/As(V) stressed seedlings. Both GSH and Cys imparted enhanced tolerance to seedlings against arsenic stress. Seedlings growth improved while level of MDA declined significantly when GSH and Cys were supplemented to As(III)/As(V) treatments suggesting GSH and Cys-mediated protection against oxidative stress. The arsenic content was highest in roots of seedlings grown in As(III) in the presence of GSH/Cys. However, in case of As(V) plus GSH or Cys, the arsenic content in seedlings was highest in shoots. The results are suggestive of differential metabolism of As(III) and As(V) in rice.


Chemosphere | 2009

Comparative transcriptome analysis of arsenate and arsenite stresses in rice seedlings

Debasis Chakrabarty; Prabodh Kumar Trivedi; Prashant Misra; Manish Tiwari; Manju Shri; Devesh Shukla; Smita Kumar; Arti Rai; Ashutosh Pandey; Deepti Nigam; R.D. Tripathi; Rakesh Tuli

The effect of arsenic (As) exposure on genome-wide expression was examined in rice (Oryza sativa L., ssp. Indica). A group of defense and stress-responsive genes, transporters, heat-shock proteins, metallothioneins, sulfate-metabolizing proteins, and regulatory genes showed differential expression in rice seedlings challenged with arsenate (AsV) and arsenite (AsIII). AsV stress led to upregulation or downregulation of an additional set of genes in comparison to AsIII. Differential expression of several genes that showed the highest contrast in a microarray analysis was validated by following the quantitative changes in the levels of individual transcripts following challenge with AsV, AsIII, Cd, Cr, and Pb. Most of the selected genes responded to challenge by heavy metals such as arsenic. However, expression of one of the cytochrome P450 genes (Os01g43740) in rice root was induced by AsV but not by other heavy metals. Similarly, one glutaredoxin (Os01g26912) is expressed specifically in the AsIII-treated shoot.


BMC Genomics | 2010

Transcriptomic and metabolomic shifts in rice roots in response to Cr (VI) stress

Sonali Dubey; Prashant Misra; Sanjay Dwivedi; Sandipan Chatterjee; Sumit K. Bag; Shrikant Mantri; Mehar Hasan Asif; Arti Rai; Smita Kumar; Manju Shri; Preeti Tripathi; Rudra Deo Tripathi; Prabodh Kumar Trivedi; Debasis Chakrabarty; Rakesh Tuli

BackgroundWidespread use of chromium (Cr) contaminated fields due to careless and inappropriate management practices of effluent discharge, mostly from industries related to metallurgy, electroplating, production of paints and pigments, tanning, and wood preservation elevates its concentration in surface soil and eventually into rice plants and grains. In spite of many previous studies having been conducted on the effects of chromium stress, the precise molecular mechanisms related to both the effects of chromium phytotoxicity, the defense reactions of plants against chromium exposure as well as translocation and accumulation in rice remain poorly understood.ResultsDetailed analysis of genome-wide transcriptome profiling in rice root is reported here, following Cr-plant interaction. Such studies are important for the identification of genes responsible for tolerance, accumulation and defense response in plants with respect to Cr stress. Rice root metabolome analysis was also carried out to relate differential transcriptome data to biological processes affected by Cr (VI) stress in rice. To check whether the Cr-specific motifs were indeed significantly over represented in the promoter regions of Cr-responsive genes, occurrence of these motifs in whole genome sequence was carried out. In the background of whole genome, the lift value for these 14 and 13 motifs was significantly high in the test dataset. Though no functional role has been assigned to any of the motifs, but all of these are present as promoter motifs in the Database of orthologus promoters.ConclusionThese findings clearly suggest that a complex network of regulatory pathways modulates Cr-response of rice. The integrated matrix of both transcriptome and metabolome data after suitable normalization and initial calculations provided us a visual picture of the correlations between components. Predominance of different motifs in the subsets of genes suggests the involvement of motif-specific transcription modulating proteins in Cr stress response of rice.


Chemosphere | 2011

Arsenic tolerances in rice (Oryza sativa) have a predominant role in transcriptional regulation of a set of genes including sulphur assimilation pathway and antioxidant system.

Arti Rai; Preeti Tripathi; Sanjay Dwivedi; Sonali Dubey; Manju Shri; Smita Kumar; Pankaj Kumar Tripathi; Richa Dave; Amit Kumar; Ragini Singh; Bijan Adhikari; Manas Bag; Rudra Deo Tripathi; Prabodh Kumar Trivedi; Debasis Chakrabarty; Rakesh Tuli

World wide arsenic (As) contamination of rice has raised much concern as it is the staple crop for millions. Four most commonly cultivated rice cultivars, Triguna, IR-36, PNR-519 and IET-4786, of the West Bengal region were taken for a hydroponic study to examine the effect of arsenate (As(V)) and arsenite (As(III)) on growth response, expression of genes and antioxidants vis-à-vis As accumulation. The rice genotypes responded differentially under As(V) and As(III) stress in terms of gene expression and antioxidant defences. Some of the transporters were up-regulated in all rice cultivars at lower doses of As species, except IET-4786. Phytochelatin synthase, GST and γ-ECS showed considerable variation in their expression pattern in all genotypes, however in IET-4786 they were generally down-regulated in higher As(III) stress. Similarly, most of antioxidants such as superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), catalase (CAT), monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR) increased significantly in Triguna, IR-36 and PNR-519 and decreased in IET-4786. Our study suggests that Triguna, IR-36 and PNR-519 are tolerant rice cultivars accumulating higher arsenic; however IET-4786 is susceptible to As-stress and accumulates less arsenic than other cultivars.


Scientific Reports | 2015

Heterologous expression of Ceratophyllum demersum phytochelatin synthase, CdPCS1, in rice leads to lower arsenic accumulation in grain.

Manju Shri; Richa Dave; Sanjay Diwedi; Devesh Shukla; Ravi Kesari; Rudra Deo Tripathi; Prabodh Kumar Trivedi; Debasis Chakrabarty

Recent studies have identified rice (Oryza sativa) as a major dietary source of inorganic arsenic (As) and poses a significant human health risk. The predominant model for plant detoxification of heavy metals is complexation of heavy metals with phytochelatins (PCs), synthesized non-translationally by PC synthase (PCS) and compartmentalized in vacuoles. In this study, in order to restrict As in the rice roots as a detoxification mechanism, a transgenic approach has been followed through expression of phytochelatin synthase, CdPCS1, from Ceratophyllum demersum, an aquatic As-accumulator plant. CdPCS1 expressing rice transgenic lines showed marked increase in PCS activity and enhanced synthesis of PCs in comparison to non-transgenic plant. Transgenic lines showed enhanced accumulation of As in root and shoot. This enhanced metal accumulation potential of transgenic lines was positively correlated to the content of PCs, which also increased several-fold higher in transgenic lines. However, all the transgenic lines accumulated significantly lower As in grain and husk in comparison to non-transgenic plant. The higher level of PCs in transgenic plants relative to non-transgenic presumably allowed sequestering and detoxification of higher amounts of As in roots and shoots, thereby restricting its accumulation in grain.


Functional & Integrative Genomics | 2014

Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root

Sonali Dubey; Manju Shri; Prashant Misra; Deepika Lakhwani; Sumit K. Bag; Mehar Hasan Asif; Prabodh Kumar Trivedi; Rudro Deo Tripathi; Debasis Chakrabarty

Industrial growth, ecological disturbances and agricultural practices have contaminated the soil and water with many harmful compounds, including heavy metals. These heavy metals affect growth and development of plants as well as cause severe human health hazards through food chain contamination. In past, studies have been made to identify biochemical and molecular networks associated with heavy metal toxicity and uptake in plants. Studies suggested that most of the physiological and molecular processes affected by different heavy metals are similar to those affected by other abiotic stresses. To identify common and unique responses by different metals, we have studied biochemical and genome-wide modulation in transcriptome of rice (IR-64 cultivar) root after exposure to cadmium (Cd), arsenate [As(V)], lead (Pb) and chromium [Cr(VI)] in hydroponic condition. We observed that root tissue shows variable responses for antioxidant enzyme system for different heavy metals. Genome-wide expression analysis suggests variable number of genes differentially expressed in root in response to As(V), Cd, Pb and Cr(VI) stresses. In addition to unique genes, each heavy metal modulated expression of a large number of common genes. Study also identified cis-acting regions of the promoters which can be determinants for the modulated expression of the genes in response to different heavy metals. Our study advances understanding related to various processes and networks which might be responsible for heavy metal stresses, accumulation and detoxification.


Plant Biology | 2010

Differential transcriptional expression following thidiazuron-induced callus differentiation developmental shifts in rice.

Debasis Chakrabarty; Prabodh Kumar Trivedi; Manju Shri; Prashant Misra; Mehar Hasan Asif; Sonali Dubey; Smita Kumar; Arti Rai; Manish Tiwari; Devesh Shukla; A. Pandey; D. Nigam; Rudra Deo Tripathi; R. Tuli

Very little is known about molecular events associated with callus differentiation in indica rice. The genes expressed differentially during shoot meristem initiation were identified on genomic arrays applied to efficiently regenerating rice calli. A thidiazuron (TDZ; N-phenyl-N-thiadiazol-1,2,3-5,ylurea)-dependent regeneration protocol was developed for efficient embryogenesis in indica rice. The regenerating embryogenic calli induced by TDZ for 10 days showed transcriptional modulation of a number of genes associated with photosynthesis, hormone metabolism, plant development, signal transduction, light response, and plant defense. Eighteen candidate miRNAs were predicted to target the genes expressed differentially in the embryogenic calli grown in TDZ-containing medium. The majority of the photosynthesis-related genes up-regulated in differentiating calli were not expressed or were down-regulated in developing seeds and inflorescences. Most of the genes down-regulated in differentiating calli were up-regulated in developing seeds. The transcriptome of differentiating callus most closely resembled that of the germinating whole seed.


Scientific Reports | 2016

Decoding regulatory landscape of somatic embryogenesis reveals differential regulatory networks between japonica and indica rice subspecies

Yuvraj Indoliya; Poonam Tiwari; Abhisekh Singh Chauhan; Ridhi Goel; Manju Shri; Sumit K. Bag; Debasis Chakrabarty

Somatic embryogenesis is a unique process in plants and has considerable interest for biotechnological application. Compare to japonica, indica rice has been less responsive to in vitro culture. We used Illumina Hiseq 2000 sequencing platform for comparative transcriptome analysis between two rice subspecies at six different developmental stages combined with a tag-based digital gene expression profiling. Global gene expression among different samples showed greater complexity in japonica rice compared to indica which may be due to polyphyletic origin of two rice subspecies. Expression pattern in initial stage indicate major differences in proembryogenic callus induction phase that may serve as key regulator to observe differences between both subspecies. Our data suggests that phytohormone signaling pathways consist of elaborate networks with frequent crosstalk, thereby allowing plants to regulate somatic embryogenesis pathway. However, this crosstalk varies between the two rice subspecies. Down regulation of positive regulators of meristem development (i.e. KNOX, OsARF5) and up regulation of its counterparts (OsRRs, MYB, GA20ox1/GA3ox2) in japonica may be responsible for its better regeneration and differentiation of somatic embryos. Comprehensive gene expression information in the present experiment may also facilitate to understand the monocot specific meristem regulation for dedifferentiation of somatic cell to embryogenic cells.


Ecological Engineering | 2013

Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system

Preeti Tripathi; Rudra Deo Tripathi; Rana Pratap Singh; Sanjay Dwivedi; Dheeraj Goutam; Manju Shri; Prabodh Kumar Trivedi; Debasis Chakrabarty


Archives of Environmental Contamination and Toxicology | 2013

Arsenite tolerance is related to proportional thiolic metabolite synthesis in rice (Oryza sativa L.).

Richa Dave; Pradyumna Kumar Singh; Preeti Tripathi; Manju Shri; Garima Dixit; Sanjay Dwivedi; Debasis Chakrabarty; Prabodh Kumar Trivedi; Yogesh Kumar Sharma; Francisco J. Corpas; Juan B. Barroso; Rudra Deo Tripathi

Collaboration


Dive into the Manju Shri's collaboration.

Top Co-Authors

Avatar

Debasis Chakrabarty

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Prabodh Kumar Trivedi

Academy of Scientific and Innovative Research

View shared research outputs
Top Co-Authors

Avatar

Rudra Deo Tripathi

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Prashant Misra

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Sanjay Dwivedi

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Smita Kumar

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Arti Rai

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Preeti Tripathi

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Sonali Dubey

National Botanical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Devesh Shukla

Western Kentucky University

View shared research outputs
Researchain Logo
Decentralizing Knowledge