Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where ManKin Choy is active.

Publication


Featured researches published by ManKin Choy.


Journal of Cerebral Blood Flow and Metabolism | 2006

The chronic vascular and haemodynamic response after permanent bilateral common carotid occlusion in newborn and adult rats

ManKin Choy; Vijeya Ganesan; David L. Thomas; John S. Thornton; E Proctor; Martin D. King; Louise van der Weerd; David G. Gadian; Mark F. Lythgoe

Vascular growth and redistribution of flow can compensate for arterial occlusion and possibly reduce the effects of hypoperfusion. As yet there is limited information on the age-dependent nature of vasculature remodelling. In this study, we have monitored the vascular and morphologic changes using magnetic resonance imaging and histology in a chronic bilateral common carotid artery occlusion (BCCAO) model in both newborn and adult rats. Acutely, cerebral blood flow (CBF) decreased immediately after BCCAO, producing a state of oligaemic hypoperfusion. At 6 months after BCCAO in both adult and neonatal rats, the CBF had normalised at control values. To investigate the underlying mechanism for the return of CBF to control values, intra- and extracerebral magnetic resonance angiograms (MRAs) were acquired. As expected, signal from the common carotid arteries was present in the sham-operated rats, but was absent in the BCCAO animals. India ink angiograms demonstrated more tortuous basilar arteries in the adult rats post-BCCAO and MRAs demonstrated more extracerebral midline collaterals in the neonatal rats post-BCCAO, indicating different modes of vascular adaptation dependent on the age at onset of the insult. Both groups had collateral vessels arising from the vertebral arteries, and BCCAO was also associated with increased diameter of basilar, posterior cerebral, posterior communicating, internal carotid, middle cerebral and anterior cerebral arteries. Our study suggests that the developing and mature animals exhibit different patterns of vascular remodelling and that the BCCAO hypoperfusion model will be useful for investigating age-dependent vascular events in response to vasoocclusive disease.


The Journal of Neuroscience | 2014

A Novel, Noninvasive, Predictive Epilepsy Biomarker with Clinical Potential

ManKin Choy; Céline M. Dubé; Katelin P. Patterson; X Samuel R. Barnes; Pamela M. Maras; Arlin B. Blood; Anton N. Hasso; Andre Obenaus; Tallie Z. Baram

A significant proportion of temporal lobe epilepsy (TLE), a common, intractable brain disorder, arises in children with febrile status epilepticus (FSE). Preventative therapy development is hampered by our inability to identify early the FSE individuals who will develop TLE. In a naturalistic rat model of FSE, we used high-magnetic-field MRI and long-term video EEG to seek clinically relevant noninvasive markers of epileptogenesis and found that reduced amygdala T2 relaxation times in high-magnetic-field MRI hours after FSE predicted experimental TLE. Reduced T2 values likely represented paramagnetic susceptibility effects derived from increased unsaturated venous hemoglobin, suggesting augmented oxygen utilization after FSE termination. Indeed, T2 correlated with energy-demanding intracellular translocation of the injury-sensor high-mobility group box 1 (HMGB1), a trigger of inflammatory cascades implicated in epileptogenesis. Use of deoxyhemoglobin-sensitive MRI sequences enabled visualization of the predictive changes on lower-field, clinically relevant scanners. This novel MRI signature delineates the onset and suggests mechanisms of epileptogenesis that follow experimental FSE.


Epilepsy Research | 2010

Quantitative MRI predicts status epilepticus-induced hippocampal injury in the lithium–pilocarpine rat model

ManKin Choy; King K. Cheung; David L. Thomas; David G. Gadian; Mark F. Lythgoe; Rod C. Scott

Convulsive status epilepticus (SE) is a common medical neurological emergency and is associated with hippocampal injury and the subsequent development of epilepsy. However, pathophysiological mechanisms that underlie injury remain unclear, and a clinically useful prognostic biomarker of at-risk patients remains elusive. We hypothesised that non-invasive quantitative multi-parametric MRI characterisation of the early time course in the lithium-pilocarpine rat model would provide insight into pathophysiological processes, and may help to develop a non-invasive prognostic marker of hippocampal injury. T(1), T(2), apparent diffusion coefficient (ADC), and cerebral blood flow (CBF) were measured before and after SE on days 0, 1, 2, 3, 7, 14 and 21. Hippocampal volume measurements were used to assess final structural outcome. MRI changes were found in the parietal cortex, hippocampus, piriform cortex, and thalamus. Each of the regions displayed time-dependent changes, and returned to baseline levels by Day 7. Hippocampal measurements peaked on Day 2, and further analysis revealed that the magnitude of these peak changes was predictive of the hippocampal volumes on Day 21. This time course is consistent with cell death and an inflammatory process. The maximal changes provide a potential clinically useful prognostic marker of final hippocampal volume.


NeuroImage | 2012

Imaging seizure-induced inflammation using an antibody targeted iron oxide contrast agent.

Ben A. Duffy; ManKin Choy; Johannes Riegler; Jack A. Wells; Daniel C. Anthony; Rod C. Scott; Mark F. Lythgoe

Early inflammation following status epilepticus has been implicated in the development of epilepsy and the evolution of brain injury, yet its precise role remains unclear. The development of non-invasive imaging markers of inflammation would enable researchers to test this hypothesis in vivo and study its temporal progression in relation to epileptogenic insults. In this study we have investigated the potential of a targeted magnetic resonance imaging contrast agent--vascular cell adhesion molecule 1 antibody labelled iron oxide--to image the inflammatory process following status epilepticus in the rat lithium-pilocarpine model. Intravascular administration of the targeted contrast agent was performed at approximately 1 day following status epilepticus. The control group received diazepam prior to pilocarpine to prevent status epilepticus. Magnetic resonance imaging of rats was performed before and after contrast administration. Comparison with quantitative T₂ measurements was also performed. At the end of the study, brains were removed for ex vivo magnetic resonance imaging and histology. Marked focal hypointensities caused by contrast agent binding were observed on in vivo magnetic resonance images in the post status epilepticus group. In particular these occurred in the periventricular organs, the hippocampus and the cerebral cortex. Relatively little contrast agent binding was observed in the control group. T₂ relaxation times were not significantly increased for the hippocampus or the cerebral cortex in post status epilepticus animals. These results demonstrate the feasibility of in vivo imaging of seizure-induced inflammation in an animal model of epilepsy. The antibody targeted MRI contrast agent identified regions of acute inflammation following status epilepticus and may provide an early marker of brain injury. This technique could be used to determine the role of inflammation in models of epileptogenesis and to study the potential for anti-inflammatory therapeutic interventions.


Experimental Neurology | 2010

Cerebral blood flow changes during pilocarpine-induced status epilepticus activity in the rat hippocampus

ManKin Choy; Jack A. Wells; David L. Thomas; David G. Gadian; Rodney C. Scott; Mark F. Lythgoe

INTRODUCTION There is a known relationship between convulsive status epilepticus (SE) and hippocampal injury. Although the precise causes of this hippocampal vulnerability remains uncertain, potential mechanisms include excitotoxicity and ischaemia. It has been hypothesised that during the early phase of seizures, cerebral blood flow (CBF) increases in the cortex to meet energy demand, but it is unclear whether these compensatory mechanisms occur in the hippocampus. In this study we investigated CBF changes using perfusion MRI during SE in the pilocarpine rat. METHODS First, we determined whether SE could be induced under anaesthesia. Two anaesthetic protocols were investigated: isoflurane (n=6) and fentanyl/medetomidine (n=7). Intrahippocampal EEG electrodes were used to determine seizure activity and reflex behaviours were used to assess anaesthesia. Pilocarpine was administered to induce status epilepticus. For CBF measurements, MRI arterial spin labelling was performed continuously for up to 3h. Either pilocarpine (375 mg/kg) (n=7) for induction of SE or saline (n=6) was administered. Diazepam (10mg/kg) was administered i.p. 90 min after the onset of SE. RESULTS AND DISCUSSION We demonstrated time-dependent significant (p<0.05) differences between the CBF responses in the parietal cortex and the hippocampus during SE. This regional response indicates a preferential distribution of flow to certain regions of the brain and may contribute to the selective vulnerability observed in the hippocampus in humans.


Epilepsy Currents | 2014

Inflammatory processes, febrile seizures, and subsequent epileptogenesis.

ManKin Choy; Céline M. Dubé; Markus U. Ehrengruber; Tallie Z. Baram

Febrile seizures (FS) are the most common type of seizures in infants and preschool children. Inflammatory mediators, which are known triggers of fever, have also been implicated as contributors to the onset of these seizures. Evidence that inflammation is present following FS and during established epilepsy suggests that it could also influence epileptogenesis. However, the potential involvement of inflammatory mediators to the epileptogenic process that may follow prolonged FS has yet to be fully determined. This article reviews the current state of our knowledge and major gaps that remain by focusing on four questions: Does inflammation contribute to the generation of FS? Does prolonged FS or febrile status epilepticus (SE) cause temporal lobe epilepsy in the absence of predisposing factors? Does inflammation contribute to the process by which febrile SE causes limbic epilepsy? And finally, can inflammation be a foundation for biomarkers and therapy for FS-induced epileptogenesis?


NeuroImage | 2011

Structural correlates of active-staining following magnetic resonance microscopy in the mouse brain

Jon O. Cleary; Frances K. Wiseman; Francesca C. Norris; Anthony N. Price; ManKin Choy; Victor L. J. Tybulewicz; Roger J. Ordidge; Sebastian Brandner; Elizabeth M. C. Fisher; Mark F. Lythgoe

Extensive worldwide efforts are underway to produce knockout mice for each of the ~ 25,000 mouse genes, which may give new insights into the underlying pathophysiology of neurological disease. Microscopic magnetic resonance imaging (μMRI) is a key method for non-invasive morphological phenotyping, capable of producing high-resolution 3D images of ex-vivo brains, after fixation with an MR contrast agent. These agents have been suggested to act as active-stains, enhancing structures not normally visible on MRI. In this study, we investigated the structural correlates of the MRI agent Gd-DTPA, together with the optimal preparation and scan parameters for contrast-enhanced gradient-echo imaging of the mouse brain. We observed that in-situ preparation was preferential to ex-situ due to the degree of extraction damage. In-situ brains scanned with optimised parameters, enabled images with a high signal-to-noise-ratio (SNR ~ 30) and comprehensive anatomical delineation. Direct correlation of the MR brain structures to histology, detailed fine histoarchitecture in the cortex, cerebellum, olfactory bulb and hippocampus. Neurofilament staining demonstrated that regions of negative MR contrast strongly correlated to myelinated white-matter structures, whilst structures of more positive MR contrast corresponded to areas with high grey matter content. We were able to identify many sub-regions, particularly within the hippocampus, such as the unmyelinated mossy fibres (stratum lucidum) and their region of synapse in the stratum pyramidale, together with the granular layer of the dentate gyrus, an area of densely packed cell bodies, which was clearly visible as a region of hyperintensity. This suggests that cellular structure influences the site-specific distribution of the MR contrast agent, resulting in local variations in T2*, which leads to enhanced tissue discrimination. Our findings provide insights not only into the cellular distribution and mechanism of MR active-staining, but also allow for three dimensional analysis, which enables interpretation of magnetic resonance microscopy brain data and highlights cellular structure for investigation of disease processes in development and disease.


Journal of Cerebral Blood Flow and Metabolism | 2009

Characterizing the Origin of the Arterial Spin Labelling Signal in MRI Using a Multiecho Acquisition Approach

Jack A. Wells; Mark F. Lythgoe; ManKin Choy; David G. Gadian; Roger J. Ordidge; David L. Thomas

Arterial spin labelling (ASL) can noninvasively isolate the MR signal from arterial blood water that has flowed into the brain. In gray matter, the labelled bolus is dispersed within three main compartments during image acquisition: the intravascular compartment; intracellular tissue space; and the extracellular tissue space. Changes in the relative volumes of the extracellular and intracellular tissue space are thought to occur in many pathologic conditions such as stroke and brain tumors. Accurate measurement of the distribution of the ASL signal within these three compartments will yield better understanding of the time course of blood delivery and exchange, and may have particular application in animal models of disease to investigate the relationship between the source of the ASL signal and pathology. In this study, we sample the transverse relaxation of the ASL perfusion weighted and control images acquired with and without vascular crusher gradients at a range of postlabelling delays and tagging durations, to estimate the tricompartmental distribution of labelled water in the rat cortex. Our results provide evidence for rapid exchange of labelled blood water into the intracellular space relative to the transit time through the vascular bed, and provide a more solid foundation for cerebral blood flow quantification using ASL techniques.


Epilepsia | 2010

Fever, febrile seizures and epileptogenesis

Céline M. Dubé; Shawn McClelland; ManKin Choy; Amy L. Brewster; Yoav Noam; Tallie Z. Baram

Febrile seizures (FS) are common and are associated with increased probability of temporal lobe epilepsy (TLE). However, whether FS can provoke TLE in the nonpredisposed brain is unknown. Using an immature rat model, we established that long FS cause TLE, and that duration of FS governed the severity of epilepsy. Epileptogenesis was accompanied, perhaps causally, by ion channel dysfunction and inflammatory changes. Because FS are a prevalent antecedent of TLE, studying the epileptogenesis that follows them provides powerful insight and potential therapies for epilepsy. For an expanded treatment of this topic see Jasper’s Basic Mechanisms of the Epilepsies, Fourth Edition (Noebels JL, Avoli M, Rogawski MA, Olsen RW, Delgado‐Escueta AC, eds) published by Oxford University Press (available on the National Library of Medicine Bookshelf [NCBI] at http://www.ncbi.nlm.nih.gov/books).


Experimental Neurology | 2015

T2 relaxation time post febrile status epilepticus predicts cognitive outcome

Jeremy M. Barry; ManKin Choy; Céline M. Dubé; Ashlee A. Robbins; Andre Obenaus; Pierre Pascal Lenck-Santini; Rod C. Scott; Tallie Z. Baram; Gregory L. Holmes

Evidence from animal models and patient data indicates that febrile status epilepticus (FSE) in early development can result in permanently diminished cognitive abilities. To understand the variability in cognitive outcome following FSE, we used MRI to measure dynamic brain metabolic responses to the induction of FSE in juvenile rats. We then compared these measurements to the ability to learn an active avoidance spatial task weeks later. T2 relaxation times were significantly lower in FSE rats that were task learners in comparison to FSE non-learners. While T2 time in whole brain held the greatest predictive power, T2 in hippocampus and basolateral amygdala were also excellent predictors. These signal differences in response to FSE indicate that rats that fail to meet metabolic and oxygen demand are more likely to develop spatial cognition deficits. Place cells from FSE non-learners had significantly larger firing fields and higher in-field firing rate than FSE learners and control animals and imply increased excitability in the pyramidal cells of FSE non-learners. These findings suggest a mechanistic cause for the spatial memory deficits in active avoidance and are relevant to other acute neurological insults in early development where cognitive outcome is a concern.

Collaboration


Dive into the ManKin Choy's collaboration.

Top Co-Authors

Avatar

Mark F. Lythgoe

University College London

View shared research outputs
Top Co-Authors

Avatar

David G. Gadian

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

David L. Thomas

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yoav Noam

University of California

View shared research outputs
Top Co-Authors

Avatar

Jack A. Wells

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge